
132

Enabling Indic Support in Library Information Systems :
An Opensource Localizer’s Perspective

Indranil Das Gupta Najmun Nessa

Abstract

This article looks into the unique nature of challenges and opportunities facing the Free &
Opensource (F/OSS) based software localizers’ community when it comes to enabling
support for Unicode-based Indic Scripts in the domain of Library & Information Science
(LIS). It describes the early background of Indian language support in LIS domain in terms
of technology used, and moves into the present-day scenario of Unicode & Open standard
based method of universal archival and access to information repositories that modern
libraries represent with their multi-media capabilities. Unicode addresses many of the
problems that had plagued earlier systems which had little or no capabilities in terms of
universal accessibility, it also brings its own set of problems that demand solutions – e.g.
the issue of collation sequences which assume significance when looked at from the
perspective of indexed search capabilities in library software. While Opensource provides
an open, pro-active, collaborative platform for rapid development, it still has to answer for
issues like availability of extensive Opentype fonts, collation sequences, less-than desired
quality of rendering by Indic script layout engines, as well as varying levels of maturity of
software components that make up the technology stack on which Indic Support enabled
Library Information Systems can and are being developed. The authors will try to seek
answers to these practical questions by looking into their localization experiences with
Koha – the world’s first Opensource library software into Bengali (this work is being followed
by Hindi localization). Inputs will also include the experiences of the team from ISI, Kolkata
which is working on localizing Greenstone Digital Library (GSDL) into Bengali. The article
will draw upon the experiences of F/OSS Indic Localizers’ community to see whether cross-
pollination of ideas can lead us towards the goal of bridging the Digital Divide.

Keywords : Indic Scripts, Unicode, Localization, Library Automation Software.

0. Information Divide & the Emerging Role of F/OSS1 in ICT4D

In the present day world, information technology (IT) is a key part of the infrastructure development. ICT
(Information & Communication technologies) penetration is being measured as part of development
indices. Access to information and the information technology has emerged as a key to the development
in any sector – be that education, access to health-care, access to markets for rural produce, to overseas
trade, entrepreneurial development, public & private investment, and even the governance of a country.

Economic disparities separate the developed nations from the rest. As a result, the developing nations
are lagging behind in adoption of IT. This is further aggravated by factors like poor literacy rates, multi-
lingual societies with little or no comprehension of English (which is the de-facto language of IT). All
these factors has given the English dictionary a new word – The Digital Divide.

Today the Digital Divide has emerged as one of the primary obstacles to development. Within countries
like India, Brazil & China, it has assumed far greater complicacy because in these countries there has
emerged the domestic Digital Divide. People within the country who have access to the latest in information
technology while the majority of the population does not have even the most basic mode of access to IT.

3rd International CALIBER - 2005, Cochin, 2-4 February, 2005, © INFLIBNET Centre, Ahmedabad

133

The emergence of Free/Opensource software as a global phenomena has resulted in redrawing the
ICT4D strategy maps. All across the developing world, the access to the underlying technology (via the
programs’ source code) and the license to add, modify and improve – either at will or driven by a need to
address specific requirements, has opened windows of opportunities of hitherto unparalleled dimensions
and importance2.

1. Relevance of these Developments in Library Information Systems

Through the ages, libraries have been the cornerstone of recorded information collectively available to
any society. The emergence of the Internet as an affordable, instant, global, digital communication
medium has perhaps brought about the most significant change since Gutenberg’s invention of the
printing press as to how libraries acquire, disseminate and manage information.

Media changes notwithstanding, libraries have acquired greater significance in the modern knowledge-
based societies with their well-defined classification, cataloging services. In developing countries they
have a far greater role to play in bridging the Information/Digital Divide.

In India, the demand for delivering timely, multi-lingual, multi-media based digital content has emerged
as the need of the day. Special libraries services have sprung up to cater to these needs. The much
talked-about Vidyanidhi3 Project is one such key example.

The reason we chose to address Library Information Systems as against taking up only Integrated
Library Management Systems (ILSes, similar to LibSys etc) or Digital Library Software (GSDL and DSpace
et. al.) is quite simple. The problems solved, problems pending and the lessons learnt in course of
developing Indic-enabled F/OSS solutions are equally applicable across the range.

Being native speakers of the Bangla (BN_IN) language and being actively involved in BN Localization
(L10N) efforts as part of AnkurBangla Project, IndLinux Consortium, and L2C2 Initiatives, examples used
will heavily depend on our experiences with Bengali. However, most of the examples, except for the very
specific ones, apply across most Indian languages.

Our work on localizing Koha or for that matter others’ initiatives on F/OSS solutions like the Greenstone
Digital Library4 Software (GSDL) or DSpace5 couldn’t have happened without the Indic Language support
being in place on the Free & Opensource platform. We believe that it is essential to share the basic know-
how of localization on F/OSS with the Library & Information Science community, now that F/OSS Indic
support have become mature enough to provide support to localization of 3 rd party software.

In the ensuing discussion, references to F/OSS will primarily focus of OSS software working on the GNU/
Linux6 Operating System which has the most mature Indic support among other Free OSes.

2. The F/OSS based Indic Localization Roadmap

F/OSS-based development models have always been collaborative from a pluralistic sense. Since its
early days it was assumed (unlike in the case of a lot of proprietary systems) that the software being
developed would be used by non-english speaking users. This is not surprising since developers across
the globe would collaborate on projects using the Internet as the ultimate project management platform.

So, when F/OSS based Indic Localization (L10N) initiatives got off the ground, the basic software
engineering framework was already in place. It goes without saying that this framework did have its
shortcomings which has since been addressed. With the framework in place, Indic Localizers could
focus on creating the basic artefacts required to deliver a L10N-ised platform to the end-users.

Indranil Das Gupta, Najmun Nessa

134 Enabling Indic Support in Library Information Systems :

These basic artefacts included – Unicode support, creation/correction of Locale Data7, correcting/modifying
rendering & layout engine programming code, creation of OpenType Fonts, creating Input Methods for
text entry and finally User-Interface (UI) translation. Below is a slide from an AnkurBangla presentation
depicting the basic components needed to deliver the Bangla GUI Interface on Linux. This applies in
case of all Indic Languages.

NB : The above slide omits a major component in the localization technology stack – the collation
sequences. We shall come back to that in due course.

We shall take a closer look at some of these components, as the issues to be presented applies equally
in case of Library Information Systems as in any other application domain based on F/OSS platform as
we found in course of our work.

3. Indian Standard Code for Information Interchange (ISCII) – The Past

During the late-80’s and early 90’s C-DAC 8 (Centre for Development of Advanced Computing), then
under the Department of Electronics, Govt of India, created a standard called ISCII (Indian Standard Code
for Information Interchange) for use of Indian Languages on Computers.

ISCII uses a 8-bit encoding that uses escape sequences to announce the particular Indic script represented
by a following coded character sequence. The ISCII document is IS13194:1991, available from the BIS
offices.

Alongside ISCII, other proprietary Indian language solutions did exist prior to Unicode. The most criticized
aspect of these developments was the proliferation of encoded fonts using closed, proprietary formats.
As a result, most of these solutions didn’t (or rather couldn’t) exchange data between themselves or
other software. Vendors who created these software did this on purpose to ensure lock-in of the users to
their specific software.

135

4. Unicode – New Challenges, New Possibilities

Unicode – a plain text standard, which is an idea of simplicity, promises to change all that for the future.
All major operating systems (Windows, Mac OSX, Linux etc.) today support Unicode as a data format.
Most are even beginning to support Unicode at GUI levels. As a result, on Unicode enabled platforms, it
now possible to copy a piece of text written in Unicoded Hindi, paste it into a web-page that you are
designing or store it AS-IS into a RDBMS like Oracle, Sybase or PostgreSQL.

Fundamentally, computers just deal with numbers. They store letters and other characters by assigning
a number for each one. Before Unicode was invented, there were hundreds of different encoding systems
for assigning these numbers. These encoding systems also conflict with one another. That is, two
encodings can use the same number for two different characters, or use different numbers for the same
character. Any given computer (especially servers) needs to support many different encodings; yet whenever
data is passed between different encodings or platforms, that data always runs the risk of corruption.

Unicode provides a unique number for every character, no matter what the platform, no matter what the
program, no matter what the language. The emergence of the Unicode Standard, and the availability of
tools supporting it, are among the most significant recent global software technology trends.

A document written in Bangla in old TTF Font using custom encoding

While Unicode seems like the likely answer for long-term adoption of Indic Language software, the
immediate questions it throws up are also quite a few. As a standard it is still evolving. One needs to use
OpenType fonts with Unicode which aren’t that many in number as yet compared to earlier, proprietary
solutions. And of course, one needs to look at the exist corpus of data stored in earlier encodings.

Indranil Das Gupta, Najmun Nessa

136 Enabling Indic Support in Library Information Systems :

ISCII to Unicode converters are fairly well-available in the Opensource. But problems are often faced with
converting documents that use TrueType fonts based on closed, proprietary encoding schemes.

5. Open Type Fonts

The OpenType specification says – “In OpenType all the information controlling the substitution and
relative positioning of glyphs during glyph processing is contained within the font itself. This information
is defined in OpenType Layout (OTL) features that are, in turn, associated with specific scripts and
language systems. Placing control of glyph substitution and positioning directly in the font puts a great
deal of responsibility for the success of complicated glyph processing on the shoulders of type designers
and font developers, but since the work involves making decisions about the appearance of text, this is
the correct place for the responsibility to land. OpenType font developers enjoy a great deal of freedom in
defining what features are suitable to a particular typeface design, but they remain dependent on application
support to make those features accessible to users.”

To understand how they actually work mention needs to be made of “two internal tables need to be
introduced now. These are the GSUB and GPOS tables that contain instructions for, respectively, glyph
substitution and glyph positioning. Glyph substitution involves replacing one or more glyphs with one or
more different glyphs representing the same text string The backing string of Unicode characters is not
changed, only the visual representation. These substitutions may be required (as part of script rendering),
recommended as default behavior, or activated at the discretion of the user; they may also be contextual,
active only when preceded or followed by a certain glyph or sequence of glyphs, or contextually chained
so that one substitution affects another.”

Example of use of GSUB table for glyph substitution

Example of use of GPOS data for glyph positioning

The list9 below describes some to the GPLed Bangla OTF fonts. As is evident, the number of glyphs
supported by each font varies often by a wide margin.

137

* Akaash – 409 characters (642 glyphs) in version 0.75

 Ranges: Basic Latin; Latin-1 Supplement; Latin Extended-A; Bengali

 OpenType layout tables: Bengali, Devanagari, Latin

 Family: Serif

 Styles: Normal

 Availability: Free download from The Free Bangla Fonts Project10

* Likhan – 286 characters (746 glyphs) in version 001.100

 Ranges: Basic Latin; Bengali

 OpenType layout tables: Bengali

 Family: Sans-serif

 Styles: Medium

 Availability: Free download from The Free Bangla Fonts Project

* Mitra Mono – 250 characters (324 glyphs) in version 0.70

 Ranges: Basic Latin; Latin-1 Supplement; Bengali

 OpenType layout tables: Bengali

 Family: Monospace (but Latin characters are not fixed width)

 Styles: Regular

 Availability: Free download from The Free Bangla Fonts Project

* Mukti – 197 characters (562 glyphs) in version 0.92

 Ranges: Basic Latin; Bengali

 OpenType layout tables: Bengali

 Family: Serif

 Styles: Regular, Bold

 Availability: Free download from The Free Bangla Fonts Project

* Mukti Narrow – 197 characters (562 glyphs) in version 0.92

 Ranges: Basic Latin; Bengali

 OpenType layout tables: Bengali

 Family: Sans-serif

 Styles: Regular, Bold

 Availability: Free download from The Free Bangla Fonts Project

Indranil Das Gupta, Najmun Nessa

138 Enabling Indic Support in Library Information Systems :

* UniBangla – 184 characters (329 glyphs) in version 1.0

 Ranges: Basic Latin (non-alphanumeric); Bengali

 OpenType layout tables: Bengali, Devanagari, Latin

 Family: Sans-serif

 Styles: Normal

 Availability: Free download from BanglaLinux11

6. Engineering Pango – The GTK/GNOME Rendering Engine

Among the F/OSS Desktop Environments – GNOME12 has witnessed the maximum work done in Indic
L10N domain. The reason was simple. GNOME was the first one to provide support for Indic Scripts
through its rendering engine – Pango. It is Pango which takes the Unicoded data, identifies the correct
OpenTypei13 font (assuming that one is installed), applies text layout processing rules that a language
may need (e.g. sanjuktaakshars or conjunct clusters) and render it on-screen.

Pango has seen some major improvements in the last 18 months. Earlier releases had rendering
issues affecting the Bengali ya-phala, ba-phala marks, handling of ZWJ/ZWNJ control characters etc14.
These were addressed by members of AnkurBangla Project. The images below describe the ante & post
situations.

The ya-phala issue #1 The ba-phala issue

The ya-phala issue #2

Later on other issues like the INIT feature15 which is essential for the Bengali script were taken up and
corrected by AnkurBangla developers. The image on the left hand side shows the INIT feature properly,
whereas on the right side is the older, incorrect rendering of the script.

139

7. Collation Sequences

In simple words, collation sequences define the sorting order in any given language locale. A simple,
implicit way, is through code-point ordering where the order is based on the numerical ordering of code
points e.g. in ASCII A = 65, B = 66, C = 67 etc.

The reason why it assumes such significance in Indic Unicode-based systems is that several Indic
language share the same script due to commonality in their source of origin (Hindi, Marathi, Sanksrit,
Konkani), and others have scripts that are very similar (Tamil-Malayalam, Kannada-Telugu).

Unicode charts assigned to Indic scripts make no distinction between languages. Therefore, some
charts use the same code chart for the following languages:

1. Devanagari: Hindi, Marathi, Sanskrit, Konkani, Nepali

2. Bengali: Bengali, Assamese, Manipuri

3. Arabic: Urdu, Kashmiri, Sindhi

The ISCII-88 standard (Indian language block of Unicode Standard is based on ISCII-8816) was based on
phonetic commonality rather than correct sorting sequence. This distorted some traditional sorting
conventions, and developers should not interpret the character sequence to be the same as their collation
sequence. For example, though Hindi and Marathi use the Devanagari Unicode charts, the Hindi sorting
sequence is not the same as Marathi. Similar situations exist in case of Assamese and Bengali which
share the same script but a different ordering sequence. This requires that sorting be tailored to languages
rather than scripts.

In multi-lingual Indic-enabled Library Information systems, the collation data is used/needed by sort/
search routines, and is therefore vital for their efficient operation. Collation data is defined in LC_COLLATE
category in locale definition. A default approach (as currently done for Indic locales) is to copy iso14651_t1
table like

LC_COLLATE

% Copy the template from ISO/IEC 14651

copy “iso14651_t1”

END LC_COLLATE

The above table (stored in /usr/share/i18n/locales/iso14651_t1) doesn’t contain any data for Indic script
ranges. So Indic sorting defaults to code points based, as in the Unicode charts. This behavior is defined
by the Unicode Collation Algorithm (UCA), providing a default sort order that may be used only when no
additional information is available. It can be found in the Unicode Technical Standard #1017 document.

Code-point based sorting is good enough for simple scripts like Latin, most European scripts where the
number of characters is less and do not generally combine with other characters (like sanjuktaakshars
in Indic Languages). The disadvantage with code point sorting is its fixed forever, and if the encoded
script (say Devanagari) were to be used with multiple languages (say Hindi, Nepali & Marathi), having
different rules for sorting then it becomes difficult to accommodate them. Since many scripts are common
across region/languages its imperative that collation sequence is independent of encoding.

Indranil Das Gupta, Najmun Nessa

140 Enabling Indic Support in Library Information Systems :

8. Localizing Koha

Having covered the technical background on which the actual work of localization was/is being done, its
time we turn towards Koha.18 About this award-winning software, Joshua Ferraro – a leading Koha
developer, says on his website 19:

“Koha was built using Perl scripting language20, MySQL Relational Database Management System 21, and
Apache22 Web Server, running on the GNU/Linux Operating System 23; however, it has been ported to
other operating systems (including Windows) and should be compatible with any system running an SQL
database, a web server, and Perl.”

Both of us had been engaged in the setting up of technical infrastructure of the library at West Bengal
University of Technology24. During the first phase, it involved implementing a fully F/OSS-based ILS
system using Koha which was completely browser-based. And during the second phase, we were
engaged in setting up a digital library by extending Koha’s capabilities. However, that is a different case
study altogether.

It was during a discuss with librarians from another organization who were commenting about lack of
Indic support in their present Library management system that the idea of localizing Koha came up.

9. The Requirements for Localization

To localize a browser-based software like Koha, a localizer has to address the following potential problem
areas:

1. Making sure that the relational database management backend supports Unicode.

2. The server-side scripting engine (PERL in this case) must support regular expressions and
strings with Unicode embedded.

3. The web server (Apache 2.0.48) must be capable of handling UTF-8 as a native CHARSET
(character set).

4. The browser used on the client systems (Mozilla for us) must support Unicode and have
complete rendering support for the script in question (Bengali) into which Koha is to be localized.

10. Creating the Localized Computation Infrastructure

With Koha being deploying on the Fedora Core 2 25 Linux platform, it was essential not to install the older
version of MySQL database server which came with it. The latest 4.0.x range of MySQL server software
which is Unicode compliant, was downloaded, compiled and installed on server.

Using the browser-based MySQL admin tool called phpmyadmin, the database was tested if it was
handling Indic language strings properly. INSERT, UPDATE and SELECT SQL statements were all used
in different permutations and combinations of Bengali, Hindi & Urdu data strings, to find out the stability
of the platform.

Apache webserver was the next in line and we needed to make sure that the list of AddCharset directives
in the apache configuration file was listing UTF-8 among others. This was to make sure that the webserver
could serve out content (in this case Koha) using UTF-8 character set encoding.

141

We tested this by uploading a webpage with its charset attribute set to UTF-8 and then trapping the http
headers to to see if we were being served the right charset content.

Once these tests proved OK and the system stable enough, it was time to pull in the latest Koha source
code from its CVS server on sourceforge26.

11. Translating Koha

After downloading the latest sources, we tried to follow the instructions provided for people interested in
translating Koha into other languages. There are essentially two areas that one has to translate – the
administrative intranet interface; and the Online Public Access Catalog (OPAC) interface that is visible to
the general public once the Koha server is online. Presently it totals about ~4000 strings in all. Of course,
this number doesn’t include the online, context sensitive help documentation.

It turned out that the translation help documentation bundled with the sources was out-of-date and didn’t
give the desired output. Being opensource software, a quick look at the code inside brought about the
following conclusion that instead of tmpl_process.pl in the misc/translator directory, one should use the
new tmpl_process3.pl script from the same directory.

The tmpl_process3.pl script created the all-important POT (Portable Object Template) file which is the
backbone of any translation effort on GNU/Linux. The script internally calls upon the GNU Gettext 2 7

Internationalization (i18n) library using PERL modules.

The next step was to rename the .pot files into the target language .po files – in this case, it was renamed
from default_intranet.pot to default_intranet_bn_IN.po and css_opac.pot to css_opac_bn_IN.po following
standard L10N conventions and start the actual translation. Once the translation is done the script is
again used to generate the HTML templates in the desired language (i.e. one presently translated to).

12. Translation Methodology

Our experiences during work on the AnkurBangla Project had equipped us fairly well in terms of selecting
terminology or creating new ones wherever needed. But in case of Koha, a different route was taken. With
the library movement having taken deep roots in West Bengal, there has been numerous efforts to
created Library and Information Science Terminology in Bengali.

Using the reference library at Bengal Library Association (Bangiyo Granthagar Parishad) a a cross-
reference glossory of terms from the domain was created and this was used extensively during the
translation. Where terms from IT were encountered, the glossaries from AnkurBangla Project were used.

Use of existing terminological referencing was done to ensure that the localized interface of Koha along
with it OPAC would be readily acceptable and meaningful to people accustomed to the Bengali terms.

13. Testing the Localized Koha

As the saying goes, the proof of the pudding is in eating it, so it was no different for a software which was
being localized. Aside from translation, changes to the HTML templating code also had to be made as the
existing code was forcing the CHARSET attribute to be iso-8859-1 and not UTF-8. This was causing loss
of data in-transit as well as junked on-screen rendering.

Indranil Das Gupta, Najmun Nessa

142 Enabling Indic Support in Library Information Systems :

The default english interface of Koha’s admin UI

Same interface but in Bengali (partially translated)

143

The Catalog Search in Bengali for a Title in Bengali

Search Result in Bengali (1 item found)

Indranil Das Gupta, Najmun Nessa

144 Enabling Indic Support in Library Information Systems :

14. Status of The Project

The localization of Koha is presently in an advanced state. It is expected that it will be finished within the
first week of January 2005, which is also when Koha 2.2 (the next version) is scheduled for release. It is
expected that with the release of Koha 2.2, Bengali would be the first South Asia language to be supported
in Koha. This project is completely non-funded and work done on it is on a volunteer basis by us in our
spare time.

During the International Summit Conference held at New Delhi during 8 – 10 December 2004, dialog
was initiated with persons from the SARAI 28 unit of CSDS (Center for Studies in Developing Societies),
New Delhi, for beginning work in the Hindi & Urdu Localization of Koha from February 2005 onwards.

15. Other Similar Projects

In recent times there has been other efforts in similar directions. The team of Prasenjit Majumdar, Dr.
Mandar Mitra & Rajdeep Mukherjee – all from ISI, Kolkata have been working on localizing the opensource
UNESCO-funded Greenstone Digital Library (GSDL) Project. They have been using Windows XP to carry
on the work of translations. Their work too is expected to be completed by January 2005. The Vidyanidhi
project too has been investing in localizing DSpace, in order to acquire support for languages such as
Hindi and Kannada.

16. Conclusion

Serious short-comings exist like the lack of collation sequence data on GNU/Linux OS platform. This
affects the quality and speed of database searching which is presently based only on code-point ordering
sequence. This problem is likely to get addressed with the next release of CLDR data (See earlier
reference to Locale data).

Also, the sorting & searching algorithms, Natural Language Processing (NLP) which work well on linear
Latin based scripts do not work quite the same way when applied to our complex, re-ordered text layouts.
Research and development needs to be undertaken in the F/OSS domain to carry forward the task of
Indic support in the areas of NLP.

Inspite of all these issues, today the ground for Indic localization of library information systems based on
Free / Opensource platforms is well-prepared for the march ahead. It is a march towards a future based
on standards-driven, internationally compatible systems offering equitable access to information to all
who are in need of information in a language of their own.

17. References

1 Free & Opensource Software
2 For example, the Extremadura province in Spain once had the lowest PC:student ratio in schools

in Europe, since the initiation of Project LinEx (mass adoption program of Linux Operating System
PCs in education sector) it now among the highest. [Ref : http://www.linuxjournal.com/article/
7908]

3 The Vidyanidhi Project [http://www.vidyanidhi.org.in]
4 Greenstone Digital Library Software [http://www.greenstone.org/]
5 DSpace Federation [http://www.dspace.org/]
6 www.kernel.org

145

7 Common Locale Data Repository (CLDR) Project [http://www.unicode.org/cldr/]
8 http://www.cdacindia.com/index.asp
9 http://www.alanwood.net/unicode/fonts.html#bengali
10 Free Bangla Fonts Project [http://www.nongnu.org/freebangfont/]
11 http://www.sourceforge.net/projects/banglalinux/
12 The GNOME Project [http://www.gnome.org/]
13 Microsoft Typography – OpenType Specification [http://www.microsoft.com/OpenType/OTSpec/]
14 Bugs in the Bengali rendering system of Pango [http://bugzilla.gnome.org/

show_bug.cgi?id=113551]
15 Bengali Opentype Specification [http://www.microsoft.com/typography/otfntdev/bengalot/

features.htm]
16 http://www.cdacindia.com/html/gist/standard/unicode.asp
17 Unicode Technical Standard #10 : Unicode Collation Algorithm [http://www.unicode.org/reports/

tr10/]
18 http://www.koha.org
19 http://kados.org/LibraryScience/koha_at_a_glance.html
20 http://perl.org
21 http://mysql.org
22 http://www.apache.org
23 http://kernel.org
24 West Bengal University of Technology [http://www.wbut.net]
25 The Fedora Project [http://fedora.redhat.com]
26 http://sourceforge.net
27 The GNU gettext project [http://www.gnu.org/software/gettext/]
28 SARAI [http://sarai.net]

About Authors
Mr. Indranil Das Gupta has been an active user and evangelist for Free & Open
Source software for the past several years. Aside from his vocation as consultant
helping in managing the adoption and migration to Free & Opensource technologies,
he has been active in the area of Localization of Free/Opensource Software in Indian
Languages. As part of the IndLinux Group (www.indlinux.org), he is currently trying to
create a model for productization of Indic F/OSS initiatives for mass-scale adoption
using the L2C2 framework. Heis presently based in Kolkata.
E-mail : indradg@l2c2.org

Ms. Najmun Nessa is presently working at the West Bengal University of Technology,
Kolkata (www.wbut.net) as an Asst. Librarian. She holds a Masters Degree in Library
and Information Science from Jadavpur University, Kolkata. Along with Das Gupta
she has been setting up a completely Opensource based Integrated Library
Management System using Koha alongside establishing a Digital Library at this
fledgling University. A founder-member of Indian Koha Interest Group, and she is
keenly interested in Indic Language Cataloguing in digital formats. As a step towards
that direction she has worked on localizing Koha version 2.2 to Bengali in
collaboration with Das Gupta.
E-mail : najmunnessa@yahoo.com

Indranil Das Gupta, Najmun Nessa

