INDEXING AND RETRIEVAL SYSTEMSON THE WEB
FOR DESIGN AND DEVELOPMENT OF A LOW COST
DIGITAL LIBRARY

by

Satish K. M*
Jayashree S**

ABSTRACT

The world wide web has become an undisputed and powerful medium to integrate multiple
information sources and services on the part of the libraries, leading to continual development
of new applications and services. Effident inplementation of exdsing services and an
opportunity for ddivering information to the desktop of remote and local users has become an
immediate priority on the part of the libraries Locally owned resources like the OPAC,
locally hosted dectronic journals and databases, aerting services like new additions and
content pages, and integrating host of other services call for an unpretentious approach for
successful information services. In this paper an effort has been made to study the functions of
various indexing and retrieval tools available on the web for their undersanding and
experience with dandard indexing practices fadilitating accurate and efficient data retrieval
leading to the abstraction of digital library.

Keywords: HTML, SGML, XML, Content Management — Document Formation

* Assgtant Librarian, Goa Universty, Taleigao Plateau, Panaji —403 206
** Technical Assgtant, National Aerospace L aboratories, Bangalore—560 017

0 Introduction

Severd free and commercid indexing and retrievd software have been developed that
address the unique search and retrievd need of user communities They ae bascdly
desgned to crawl and index web servers or portions of these servers to creste custom and
searchable indexes of the documents and data housed on the servers. They have features that
are common with Internet seerch engines, but dso contain some features that are unique, viz.,
provide indexing for other document formats like the PDF, word processng. Spread shedts,
databases, graphics and others contained in an intranet web Ste and are usudly designed to
provide more precise data filtering and refrieva limiting the quantum of information the user
is required to dgft through. Information professonds familir with the indexing and
subsequent searching process can lend a lot to the evduaion and implementation of these
indexing and retrievd tools within the libraries The need is to familiarise with the products
avalable and the issues surrounding ther sdection, implementation and use. Indepth
knowledge of searching techniques, together with the use of controlled vocabulary, Boolean
operaiors, proximity operators and relevance ranking is necessty for evdudion. An
underganding and experience with sandard indexing practices and parameles can d0
ensure that the data contained in the various indexes built usng these tools will facilitate
accurate and efficient data retrieval. Although there are many players in this area, we shdl
limit and discuss the features and functiondity of the following free indexing and rdrieva
systems for bibliographic and fulltext data: freeWAIS sf, Iste/lsearch, MPS, Yaz/Zebra. We

2

adso look into the tools for indexing web Stes and HTML files Harvest, SWISH, Ht//Dig
and WebGlimpse.

As the dze of information systems increese 0 does the necessity of providing searchable
interfaces to the underlying daa Indexing content and implementing an HTML form to
search the index is one way to accomplish this god, but dl indexing and retrievd tools are
not same. This case study enumerates the pros and cons of the above mentioned toolkits
currently available and makes recommendations on which to use and for what purposes. The
soope is limited to the indexing of ASCII format. Findly, this case sudy will make readers
aware tha good search interface done does not make for good information systems. Good
information sysems dso require condgently agpplied subject andyss and wdl-structured
data

1 Bibliographic and Fulltext data
freeWAI S-sf

Of the indexing and retrievd tools andysed here, free WAIS-S is by far the oldest, and the
predecessor Isite/lsearch, SWISH, and MPS. Yet, freeWAIS-o is not redly the oldest indexer
because it owes its exisence to WAIS origindly developed by Brewser Kahle of Thinking
Machines, Inc., in 1991.

FreeWAIS-& supports a bevy of indexing types. For example, it can eedly index Unix mbox
files, text files where records are ddimited by blank lines, HTML files, as wdl as others.
Sections of these text files can be associated with fidds for fiedd searching through the
cretion "format files' -- configuration files made up of regular expressons. After data hes
been indexed, it can be made accessble through a CGl inteface cdled SFgate, but the
interface relies on a Parl module, WAISpm, which is difficult to compile as it uses some of
the shared objects evolved after compiling the freeWAIS-& . The interface supports lots of
seach fedures incduding fidd searching, nested queries, right-hand truncation, thesauri,
multiple-database searching, and Boolean logic. This indexer represents aging code. Not
because it doesnt work, but because as new versons of operating systems evolve freeWAIS
& get hader and harder to inddl. After many trids and tribulaions, it has been possble to
compile and ingdl on RedHat Linux, and has been found most useful for indexing two types
of daa achived emal and public doman dectronic texts For example by indexing
archived email, one can do free text searches againg the archives and return names, subject
lines, and ultimatdly the emall messages (plus any attachments). Using the "pard' indexing
type it is possble to index a smdl collection of public doman literature and provide a
mechanism to search one or more of thexe texts smultaneoudy for keywords like "dynasty”
to identify paragraphs from the collection. It is dso amendble to index the bibliographic
records separated by any ddimiter. Congpicuous limitation here is the generation of a large
Sze of theindex files when compared to its contemporaries.

| site/l search

Isearch is a software system for searching though large amounts of text. Developed by the
Clearinghouse for Networked Information Discovery and Retrievd (CNIDR) in 1994. The
sysgem dlows a user to very quickly find out what documents are avalable that contain
certain words. Unlike older search systems, Isearch does not use a list of keywords or an
abdract; every word of every document can be checked. This dlows greatly improved

3

chances of discovering new information in old collections. Handles very large collections
over 1-gigabyte collections can be handled on modest servers. Essentidly unlimited textbases
can be searched with careful layout and planning. Very sophidticated result sorting: The
documents most likdy to be usgful are returned first. Ranking is based on datisticd andysis
of word frequencies and is generdized for a wide variety of subjects and user <ill leves
Works wdl with OCR document storage and retrievad systems no need for people to classfy
documents, and the datistica ranking method is forgiving of OCR erors. Easy to customize:
The modular, objectoriented structure of Isearch means that new fegtures can be added
independently of the lseerch core. Third paty extenson is fadilitated by usng wel-defined
Application Programming Interfaces (APIS) implemented in C++. Integrates smoothly with
World Wide Web (WWW) and ANSI Z39.50 servers. Anyone can search an Isearch textbase
usng web browser. When used with ISte package, Isearch can be used through a Z39.50
sesson to interoperate with library automation software. Isearch and ISte together form
three-tier dient-server architecture to dlow essentidly unlimited capacity growth.

ISte/lsearch is one of the very first implementations based on the WAIS code. It is intended
to support the Z39.50 information retrievad protocol. Like freeWAIS it supports a number of
file formats for indexing. Unfortunately, ISte/lsearch no longer seems to be supported and
the documentation is wesk. While it comes with a GGl interface and is easly ingdled, the
user interface is difficult to understand and needs a lot of twesking before it can be cdled
usable by today's standards.

MPS

MPS seems to be the fastest of the indexers andysed. It can creste more data in a $orter
period of time than dl of the other indexers Unlike the other indexers MPS divides the
indexing process into two parts parsr and indexer. The indexer accepts what is cdled a
"dructured index dream®, a specidized forma for indexing. By dgructuring the input, the
indexer expects it is possble to write output files from the database application and have the
content of database indexed and searchable by MPS. It is not limited to indexing the content
of databases with MPS. Since it too was origindly based on the WAIS code, it indexes many
other data types such as mbox files, files where records are ddimited by blank lines
(paragraphs), as well as a number of MIME types (RTF, TIFF, PDF, HTML, SOIF, etc.).
Like many of the WAIS derivaives, it can search multiple indexes smultaneoudy, supports a
vaiant of the Z39.50 protocol, and a wide range of search syntax.

MPS aso comes with a Perl APl and an example CGI interface. The Perl APl comes with the
barest of documentation, but the CGI stript is quite extensve. One of the neatest festures of
the example CGl interface is its ability to adlow users to save and delete searches againgt the
indexes for processng laer. For example, if this festure is turned on, then a user first logs
into the sysem. As the user searches the system their queries are stored to the local file
system. The user then has the option of deleting one or more of these queries. Later, when the
user returns to the sysem they have the option of executing one or more of the saved
searches. These searches can even be designed to run on a regular bass and the results sent
via email to the user. This feature is good for deta thet changes regularly over time such news
feeds, mailing list archives, etc. MPS has a lot going for it. f it were able to extract and index
the META tags of HTML documents, and if the structured index stream as well as the Perl

APl were better documented, then this indexer/search engine would ranking higher on the
lig.

Yaz/Zebra

The Yaz/Zebra combination is probably the best indexer/search engine solution for librarians
who want to implement an open source Z39.50 interface. Z39.50 is an ANSI/NISO standard
for information retrieval based on the idea of dient/server. According to Library of Congress
web ste “It specifies procedures and sStructures for a client to search a database provided by a
saver, retrieve database records identified by a search, scan a term list, and sort a result set.
Access control, resource control, extended services, and a hep fadlity is dso supported. The
protocol addresses communication between corresponding information retrieval goplications,
the cient and server (which may resde on different computers); it does not address
interaction between the dient and the end-user.” In another words, Z39.50 tries to fecilitate a
"query once, search many" interface to indexes in a truly standard way, and the Yaz/Zebra
combingtion is probably the best open source solution to this problem.

Yaz is a toolkit dlowing cresting Z39.50 diets and servers. Zebra is an indexer with a
Z39.50 front-end. To make these tools work, the firg thing to be done is to download and
compile the Yaz toolkit. Once indaled documents are fed to the Zebra indexer (it requires a
few Yaz libraies) and make the documents avalable through the server. While the
Yaz/Zebra combination does not come with a Perl AF, there are a least a couple of Perl
modules avalable from CPAN providing Z39.50 interface. There is dso a module cdled
ZAP (http://www.indexdata.dk/zep/) dlowing embedding a Z39.50 dient into Apache web
server.

There is absolutdy nothing wrong with the Yaz/Zebra combination. It is wel documented,
dandards-based, as wel as easy to compile and ingdl. The difficulty with this solution is the
protocol, Z39.50. It is conddered overly complicasted and therefore the configuration files
need to be maintained and the formats of the files available for indexing are rather obtuse.

2 Indexing Websitesand HTML Files
Harvest

Harvest was origindly fuded by a federd grant in 1995 a the University of Arizona It is
essentidly made up of two components gatherers and brokers. Given sats of one or more
URLS, gatherers crawl locd and/or remote file systems for content and creste surrogate files
in a forma cdled SOIF. After one or more of the SOIF collections have been crested they
can be federated by a broker, an gpplication indexing them and makes them available though
aweb interface.

The Harvest system assumes the data being indexed is ephemera. Consequently, index items
become "dde', ae auttomaticaly removed from retrieva, and need to be refreshed on a
regular bass. This is conddered a feaiure, but if the content does not change very often it is
more a hindrance than a benefit. Harvest is not very difficult to compile and ingdl. It comes
with a decent shdl sript dlowing setting up rudimentary gatherers and brokers.
Configuration is done through the editing of various text files outlining how output is to be
displayed. The system comes with a web interface for administrating the brokers. If the
indexed content is consgently structured and includes META tags then it is possble to

output very meaningful search results that include abdracts subject heedings, or just about
any other fidds defined in the META tags of the HTML documents. The red strength of the
Havest sysem lies in its gahering functions. Idedly sysem adminidrators are intended to

5

creste multiple gatherers. These gatherers are designed to be federated by one or more
brokers.

SWISH

Kevin Hughes origindly wrote SWISH. This software is a modd of amplicity. To get it to
work one neads to downloaded, unpack, configure, compile, edit the configuration file, and
feed the file to the gpplication. A sngle binary ad a sngle configuration file are used for
both indexing and searching. The indexer supports web crawling. The resulting indexes are
portable among hosts. The search engine supports phrase searching, relevance ranking,
semming, Boolean logic, and fidd searches.

The hard part about SWISH is the CGI interface. Many SWISH CGI implementations pipe
the search query to the SWISH binary, capture the results, parse them, and return them
accordingly. Recently a Perl as wdl as PHP module have been developed dlowing the
developer to avoid this problem, but the modules are conddered beta software. Like Harves,
SWISH can automaticdly extract the content of HTML META tags and make this content
field searchable. Assume aMETA tag in the header of the HTML document such asthis:

<META NAME="subject" CONTENT="adaptive technologiess CIL (Computers In
Libraries);">

The SWISH indexer would create a column in its underlying datdbase named "subject” and
ingat into this coumn the vdues "adgptive technologies' and "CIL (Computers In
Libraries)". Then aquery can be submitted to SWISH asthis.

ubject = "adaptive technologies'

This query would then find al the HTML documents in the index whose subject META tag
contained this vadue reaulting in a higher precison/recdl raio. This same technique works in
Harvest as well, but since the results of a SWISH query are more easily mallesble before they
are returned to the web browser,. A specific fidd can easly sort SWISH results, or more
importantly, SWISH results can be marked up before they are returned. For example, if CGl
interface supports the GET HTTP method, then the content of META tags can be marked up
as hyperlinks dlowing the user to easlly address the perennid problem of "Find me more like
thisone” thus supporting the query by example search type.

Ht://Dig

This is ample web gSte indexer, but does not have the features of some of the other available
digributions. Configuring the gpplication for compilation is essy, but unless the pahs ae st
correctly. Like SWISH, to index the data needs to be feed via the application configuration
file and it then creates gobs of data. Many indexes can be creasted and they then have to be
combined into a single database for searching.

The indexer supports Boolean queries, but not phrases searching. It can goply an automatic
sgemming dgorithm. The search engine does not support field searching, and a rather
annoying thing is that the indexer does not remove duplicates. Consequently, index.ntml files
amost aways gqpear twice in search results. On the other hand, one notable feature is it does
do thet the other engines dont do (except WebGlimpse) is highlight query terms in a short

6

blub (a psaudo-abstract) of the search results. Ht:/Dig is a smple tool. Consdering the
complexity of some of the other tools covered here.

WebGlimpse

WebGlimpse is a newer incanaion of the origind Havest software. Like Harved,
WebGlimpse rdies on Glimpse to provide an indexing mechanism, but unlike Harvest,
WebGlimpse does not provide a means to federate indexes through a broker. Compilation and
inddlation is raher harmless, and the key to usng this gpplication effectivey is the ability to
edit a andl configuration file that is used by the indexer (archivecfg). Once edited correctly,
another binary reads this file, crawls a locd or remote file sysem, and indexes the content.
The indexes are then avalable through a smple CGI interface. Unfortunately, the output of
the interface is not configurable unless the commercid verson of the software is purchased.
This is a red limitation, but on the other hand, the use of WebGlimpse does not reguire a
separate par of servers (a broker and/or a gatherer) running in order to operate. WebGlimpse
reads Glimpse indexes directly.

3 Conclusion

Indexers provide one means for "finding a needle in a haysack” but not necessarily depend
on it to sidfy user informaion needs, information systems require wel-structured data and
condgently gpplied vocabularies in order to be truly useful. Information systems can be
defined as organized collections of information. In order to be accessed, they require
dements of readability, browsability, searchability, and findly interactive assistance. It
connotes meaningful navigation, a sense of order, and a sysemdic layout. As the Sze of an
information sysem increeses, it reguires browsability -- an obvious organization of
information that is usudly embodied through the use of a controlled vocabulary.
Searchability is necessary when a user seeks specific information and when the user can
aticulae thar information need. Searchability flattens browsable collections. Findly,
interective assdance is necessaty when an information sysem becomes very large or
complex. Even though a particular piece of information exigs in a system, it is quite likdy
that a user will not find tha informaion and may need hep. Interactive assstance is tha
help mechaniam.

By creding wdl-sructured data one can supplement the searchability aspects of the
information sysem. For example, if the data is indexed is HTML, then insertion of META
tags into the documents is useful and can be used as a controlled vocabulary -- a thesaurus -
to describe those documents. If this is used then SWISH or Harvest can be used to extract
these tags and provide fidd-searching access to the documents. Free text searches rely too
much on saidtica anadysis and can not return as high precision/recal retios asfidld searches.

The indexing and retrievd tools discussed here have different drengths and wesknesses. |If
the content is primarily HTML pages, then SWISH is mog likely the gpplication one would
want to use. It is fast, easy to ingal, and since it comes wih no user interface one can create
with jus aout any scripting language. If content is not necessrily HTML files but
structured text files then MPS or the Yaz/Zebra combination may be preferred. Both of these
goplicaions support a wide variety of file formats for indexing as wel as the incorporation of
standards.

References

. freeWAIS-o

http:/1s6-www..informatik.uni-dortmund.defir/projectsfreeWAI S-sf/
. Harvest
http:/Aww .tardis.ed.ac.uk/harvest/
Ht://Dig
http:/Amww.htdig.org/
ISte/lsearch
http://mww.etymon.com/l search/
MPS
http:/Avww.fsconsult.com/productsmps-server.html

. SWISH

http:/sunsite berkel ey.edwW SWISH -E/

. WebGlimpse

http://\webglimpse.net/

. Yaz/Zebra

http://indexdata.dk/zebral
http:/lcweb.loc.gov/z3950/agency/markup/01.html

