
International Journal of Computer Applications (0975 – 8887)

Volume 109 – No. 4, January 2015

13

Efficient Dynamic Index Structure for Natural Number

Intensive Application

Mayank Patel
Department of

Computer Science
Gujarat University,
Ahmedabad, India

Bhavesh Parmar
Department of

Computer Science
Gujarat University,
Ahmedabad, India

Yatrik Patel
INFLIBNET Centre,
Gandhinagar, India

Hiren Joshi
Dr. Babasaheb

Ambedkar Open
University,

Ahmedabad, India

ABSTRACT

Wide range of indexing techniques exists in the world of

relational database. Speed of data insertion & retrieval

depends on the type of query and available Indexing

mechanism. Prevalent mechanisms lack in terms of space-

time efficiency and simple structure, for real time applications

where the database system needs to handle queries like

equality search & range search. Even for simple tasks like

getting data by ID, a system imposes heavy resource

utilization. For example, Applications such as, telephone

directory, transaction information details in banking, status

about railway reservation etc., backed with relational database

system that employs complex structure like B-Tree or B+-

Tree. Hence in such cases, instead of those complex

structures, if some lighter technique can be used, which can

greatly enhance the overall performance in terms of memory

usage and simpler in terms of working & implementation. The

paper presents how the Proposed Technique can significantly

impact the overall performance, if applied as Primary

Indexing method for range search & equality search queries.

General Terms

Tree Structure, Indexing, Management in Data Structures,

Trie Tree, B-Tree, B+-Tree, Algorithms

Keywords

Natural numbers, Dynamic index structure, Indexing,

Database management system.

1. INTRODUCTION
A Database is defined as organized collection of logically

related data items [1]. A Relational Database is a database that

represents data as a collection of tables, wherein all data

relationships are represented by common values, in related

tables [1]. An Index is a data structure used by DBMS that

organizes data records on disk such that it optimizes certain

kinds of data retrieval operations. With the help of an Index, a

Database System can achieve efficient retrieval of those

records, which satisfy search conditions on the search key

fields of the Index [2]. An Index greatly reduces the searching

overhead for DBMS where the query refers to only tiny

portion of records in a file. DBMS uses diverse mechanisms,

starting from sequential scanning to indexing; from hashing to

combination of indexing; hashing to some other complex

techniques to quickly fetch data [1, 3].

Indexes for Relational Database are broadly classified into

Ordered Index & Hashed Index. Ordered Index is further

classified into clustered index & non-clustered index. In

clustered index the search key defines an order which is

sequential whereas in non-clustered index the search key

defines an order which is different than clustered order.

Clustered index stores data physically in the dame order as

index whereas in non-clustered a separate list is maintained

that points to the actually stored data [2, 3].

In Hashed Index approach, the records in a file are grouped in

buckets. Here this bucket consists of a primary page and

possibly additional pages linked in a chain. The bucket, to

which a record belongs, can be determined by applying a

special function to the search key. This special function is

called a hash function. Given a bucket number, a hash-based

index structure allows us to retrieve the primary page for the

bucket in one or two disk I/Os. On inserts, the record is

inserted into the appropriate bucket & once the bucket is full,

an 'overflow' pages are allocated as needed. To search for a

record with a given search key value, the same hash function

that was used for insertion, is applied to identify the bucket to

which the required records reside. If the search key value for

the record is not known then scanning of all pages in the file

would be required [2].

Database system employs multiple engines and multiple

Indexing techniques. One of many parts in database engine is

query optimization; the task of it to take decision, which

ultimately results in to minimum time of locating the

requested data [4, 5]. For example, B-Tree and R-Tree, two

different structures are employed by MyISAM engine for

Indexing [6]. Now, Hashing i.e. Hashed based Index is used

by DBMS for equality comparisons that use the „=‟ or „! =‟

operators only. This type of Index is not suitable for

comparison operators like „>‟, „>=‟ or „<‟, „<=‟, which finds

values in a range. MySQL documentation notes that it

becomes difficult for MySQL to determine how many rows

exists between two values, for range search [4].

Consideration of wider range of applications by the authors

resulted into a deprivation of method for those applications

that exhibit certain behaviour. It was observed that, a simple

& efficient structure was missing for application, where the

application most of the time need to deal with fetching of

information by matching and comparing with natural

numbers. The problem with traditional & prevalent methods

was that they were quite complex in terms of their working

and hence resulted in to big memory footprint & unnecessary

usage of system resource. To name a few such applications,

telephone directory, bank transactions, customer order

tracking in e-commerce etc., were in this category.

Graefe, Goetz, and Harumi Kuno [4] notes that the basic

design has not been changed much even after 40 year‟s effort

in optimization. As a result their implementation continues to

exhibit the same structure overhead when applied to the

applications the authors just described. The hashing technique

i.e. Hashed Index, imposes a constraint of load factor which

limits the performance of hashing beyond certain pick value.

In addition, enormous amount of hashing in case of collision,

International Journal of Computer Applications (0975 – 8887)

Volume 109 – No. 4, January 2015

14

to find the right bucket to map the key to be retrieved or to be

placed, is also the limiting factor in hashing technique [7-20].

A new structure has been introduced in this paper, which is a

kind of tree structure but not the tree structure. In that there is

header which maintains crucial information for structure. Out

of 4 cells in the header, the 1st & 2nd cells include

information about Start ID & Last ID respectively. The 3rd

cell maintain information about Root Address of Indexing

structure while the 4th cell about digit Length of Last ID

number. Starting from, below the header to the last level, in

the whole tree, there are arrays of length 10. Whilst the only

last level contain arrays of length 11. This last level arrays

points to actual data on the disk.

2. BACKGROUND
R. Bayer and E. McCreight, at Boeing Scientific Research

Labs, proposed an external index mechanism with relatively

low cost for most of the operations and called it a B-tree [1,

2]. According to the property of B-Tree, it contains variable

number of children at each node. Important thing to note in

this tree is that all of the child nodes have data contained

within them.

Another variant of B-Tree is B+-Tree. It stores data at leaf

level only & the internal nodes contain only pointers to those

data [1, 2, 5]. It is widely used in many relational database

systems for metadata indexing. B*- tree is yet another variant

of B-Tree. It reduces the space utilization by densely packing

the internal nodes [5].

R. Bayer yet presented one more variant for multidimensional

data indexing [19]. It is same as B+- Tree except that records

are stored according to Z-order or also called Morton order.

However the algorithm exhibits exponential behaviour, for

range search in multidimensional point data.

Bumbulis, Peter offered one more revised form of B-Tree

called compact B-Tree [20]. It compact the tree by using the

free space of siblings before overflow occurs in the node. This

mechanism significantly reduces total amount of space

utilized by reducing the no. of split, no. of nodes required.

Graefe, Goetz, and Harumi Kuno did survey on modern B-

Tree technique & concluded that the core design of B-trees

has remained unchanged in 40 years. This includes balanced

trees, pages or other units of I/O as nodes, efficient root-to-

leaf search, splitting and merging of nodes, etc. [4]. Many

improvements have been done in every aspect like, multi-

dimensional data, algorithms for accessing, for example,

multi-dimensional queries. Improvement in data organization

within each node is also another one, for example,

compression & cache optimization [4].

Hashing is also used in indexing task by database system. In

hashing, the data is mapped in to memory, called buckets,

according to mathematical function defined. And to retrieve it,

the same mathematical function is used which generates the

same location of bucket where the data was previously

mapped to [1, 2, 5]. Though hash table can offer rapid

insertion, deletion, and search of both strings and integers, it

requires a form of collision resolution to resolve cases where

two or more keys are hashed to the same bucket. To resolve

this, various mechanisms have been proposed like, linked lists

[7] – used when number of keys is not known in advance,

array hash [8] – a cache conscious scheme for previous

method, open addressing – stores homogenous keys directly

within bucket & gives better usage of CPU & cache [9, 10].

Open addressing schemes: Linear probing, where the interval

between probes is fixed [18]; quadratic probing [12] where

probe interval is increased by addition of successive outputs

of a polynomial to the starting value; and double hashing [12]

where probe interval is computed by second hash function.

Previous three techniques still faces collisions.

Coming to relatively new concept regarding collision

resolution, cuckoo hashing [13], is another open-addressing

solution where it maintains two hash tables & two hash

functions. When collision take place it moves the data around

alternative bucket. Various schemes & mechanism have

proposed to enhance the performance & reduce the space, like

cuckoo hashing with pages – where each key has several

possible locations, or cells, on a single page, and additional

choices on a second backup page [14], with improved,

insertion [15], look up [16] & setting upper bound for

construction time in this technique [17].

Nikolas Askitis did comparison of bucketized cuckoo hashing

(a new scheme to address collision, which employs several

hash function & hash bucket that can store more than one key)

and found out that despite a constant worst-case probe cost, it

was consistently slower than the array hash to build, search,

and delete keys with a skew distribution. The bucketized

cuckoo hash table could only withstand with the performance

of the array hash under heavy load and when there is no skew

in the data distribution [18].

Important thing to note here was that it still has constraint of

collision, load factor, distribution.

Edward Fredkin, gave a technique called Trie tree. Here the

core part is that the alphabets or digits are stored by taking

each digit at a time & checking where they differ. According

to the position where they differ the alphabet or digit is stored

at that place [22]. However, Trie tree [22] has space/time

trade-off of managing child nodes i.e. either a potentially

large and sparse array of indexes at each node would be

needed or implementation of a secondary search algorithm to

find the appropriate child would be needed.

Patricia tree [22], a space optimized Trie tree at small size; if

it is well-designed it is comparable & sometimes faster than

hash maps/balanced trees. However, due to the effect of pre-

determining what the branching criterion is, it does lack

performance.

Stefan Björnson proposed a new technique called

“Management in Data Structure”; which was simplification to

a tree called Trie. The main intention was to simplify the

management of data storage for relatively simple task like

storing digits & alphabets [23].

3. PROPOSED SYSTEM
This section addresses the logical structure of proposed

technique, with in-depth discussion of how the technique

works. The structure carries following property.

1. The Root node maintains information about first ID,

last ID of the record inserted, root address of
indexing structure plus length of last ID inserted.

2. Total no. of levels beneath the root node would be
the maximum length of natural no.

3. Structure dynamically adds an array of length 10, as
required in each level.

4. Intermediate level arrays contain addresses of child

arrays & the last level arrays contain addresses of
actual data.

5. Each last level array would contain an extra cell
which is used to connect each of the last level arrays.

International Journal of Computer Applications (0975 – 8887)

Volume 109 – No. 4, January 2015

15

Following figures with example-description could give better

idea of the property & their working.

Basic structure is shown in Figure 1. At the top there is a

header which maintains information of Start ID, Last ID of

the records to be indexed. The third information cell is the

root address of the first array in the hierarchy. At the last,

fourth cell contains information of maximum length of the last

ID. Beneath the header structure there would be an array of

fixed length 10; plus 1 extra cell for leaf level arrays. Leaf

level arrays stores address of the actual data. The total number

of levels in the structures would be equal to the length of the

largest number in the ID column. So, for example, if

ID=7685493 then total no. of levels except the header would

be 7(the length of ID number).

Fig 1: Basic structure

Next, various operations are explained that needs to be

performed on the structure.

3.1 Insertion
Initial values in header structure before insertion of first

record would be as shown in Figure 2. Here Start ID & Last

ID = 0 means no records. Root Address is NULL means no

record & so there isn‟t any root.

Note: It should be noted that in all of the figures, all of the

arrays beneath the header, having numbering given from 0 to

9, is for understanding purpose only. So it should not be

confused with oblivion that there is array where the first row

is numbered with 0 to 9 & in the second row it would have

corresponding addresses. There would be only one array & it

itself would contain address of the next array beneath it (if it

is intermediate array) or pointer to the actual data (if it is the

last level array in respective tracing of the ID).

Fig 2: Empty structure (Initial values)

3.1.1 Inserting record with ID=1
As shown in Figure 3 when first record is inserted with ID=1,

the values in header structure of Start ID & Last ID would be

replaced with 1 & the third cell would contain the root address

of the Indexing structure. Now, the first cell of newly added

array would have null, as it doesn‟t point to any further Index

structure beneath it. The second cell in the array would

contain address of the data i.e. record associated with that ID.

Subsequent records with ID=2 to ID=9 would be inserted

accordingly in the same manner as described for 1.

Fig 3: Insertion of 1st record with ID=1

3.1.2 Inserting record with ID=10
Since at the time of insertion of record with ID=10 the 1st

array would be full. A new array of fixed length 10 would be

inserted beneath the header structure & above the first array in

the first level of the structure. Figure 4 illustrates the situation.

Fig 4: New array inserted beneath header structure &

above first array of first level, in the structure

Now, as shown in Figure 4 the first cell of newly inserted

array would contain address of the first cell of second level

(which was first level before new array was inserted above it).

This way splitting is avoided. Now a new array in 2nd level

would point to the record data of ID 10 as shown in Figure 5.

Fig 5: Record with ID=10 inserted

3.2 Lookup (Searching)
In lookup procedure first it would be checked whether there

exists a record with that particular ID by comparing it with the

first two values in header structure, Start ID & Last ID. If not

then lookup procedure would be terminated from there itself

otherwise it would be continued to next steps. In next step the

International Journal of Computer Applications (0975 – 8887)

Volume 109 – No. 4, January 2015

16

digit starting from 1st to last position i.e. up to length of the ID

would be traversed accordingly & finally the last position

would end up further traversing to actual data.

3.2.1 Equality search - Searching record with

ID=16

Fig 6: Searching record with ID=16

Refer Figure 6 that illustrates the searching procedure for ID-

16. The searching flow would execute like this. First it would

be checked whether ID=16 lies between the range of the total

records inserted or not. It certainly does, so now digit at the

first position is taken i.e. “1”. The 3rd cell in the header

structure contain address of the 1st array at first level, so using

that it reaches to the 1st location in that array & plus 1 the

pointer (i.e., add one to the address) to go to the second cell of

that array. After reaching 2nd cell in the first level array,

address of the 2nd level array is known. Now 2nd digit of the

ID is taken i.e. 6, so the position is added with 6 to reach at

the 7th location in the second level array, which contain

address of data having ID=16.

3.2.2 Range search – Searching all records i.e.

from ID=1 to ID=21
In range search queries, all records between specified ID

ranges would be retrieved. Here the 11th cell kept for

connecting all last level arrays comes into picture. This 11th

cell would be used to quickly jump to next record in the

sequence of leaf level arrays.

Take for example, if all records between ID rang 1 to 21

needs to be fetched. This would be accomplished as follows.

After checking validity of the ID range, the record with first

ID in the range is reached, by following the same procedure as

discussed in “Search” part. Figure 7 depicts the situation.

Once at leaf level, records would be fetched one by one. Once

reached to the end of the concerned array i.e. the last cell, the

11th cell would be used to know the next array‟s address &

again all records in the ID range would be fetched. The

procedure repeated until the last ID is reached in the range

query.

Fig 7: 11th cell in the leaf level arrays is used to get next

address of array in the sequence

3.3 Update
The updating of record involves the same procedure of

locating the record with the given ID as illustrated in above

lookup procedure. After reaching at the specified ID the

record is simply updated.

3.4 Deletion
In deletion there are two cases.

1. Deletion of single record.

2. Deletion of record in specified range

3.4.1 Deletion of single record
Here the same procedure is used described in „equality search‟

to reach to the particular record to be deleted. After reaching

to the record to be deleted; the record is deleted & NULL is

set to indicate that it no longer points to any data.

3.4.2 Deletion of records in specified range
In this case, procedure described previously for searching

records with specified ID range, is used. And then records

within specified range are deleted.

In both cases, the spaces occupied by unused arrays can be

freed when they no longer points to any data.

Figure 8 shows advantage of the proposed structure. Here the

unused arrays are de-allocated & thus space is saved, as

records between ID=10 to ID=19 were deleted.

Fig 8: De-allocated unused array pointing to deleted

records 10-19.

4. EXPERIMENT SETUP
In the experiment more emphasis has been given to the range

search query performance evaluation. Testing & comparison

is done of the proposed technique with B-tree and B+-Tree.

International Journal of Computer Applications (0975 – 8887)

Volume 109 – No. 4, January 2015

17

Measurement of Insertion time and Searching time (in

seconds) of all these method against Proposed Technique is

done. Space requirement is also measured in KBs (Kilobytes).

In B+-Tree, data inputs were set of natural numbers generated

by computer program i.e., each index entry stored a

corresponding number. For Proposed Technique authors

provided natural numbers to be stored by the structure at the

end-leaf level.

Calculation of Insertion time for each technique is done by

summing up the time taken by insertion module. Starting from

inserting first record to the last record with predefined

benchmark; ranging from 1 Million to 15 Million. Similarly

Search time is total of getting all the inserted records one by

one from Index.

To measure Space, inbuilt system tool provided by the

Windows and LINUX OS is used.

Microsoft Visual Studio 2010 IDE is used to run & test all

three techniques. The machine was Intel Core 2 Quad Q6600

@ 2.40 GHz running 32-bit Windows 7 Ultimate and Fedora

20 LINUX having single user. The machine had 2GB of

generic DDR2 666 RAM with 4MB of L3 cache and L1, L2

cache being 32 KB.

One limiting factor regarding testing was that as the technique

has been proposed for database, it was required to integrate

the proposed technique to at least one of available Relational

Database System.

Unfortunately because of time limitation & very lengthy

process of achieving that environment, the testing criterion

has been bounded to comparing the all three methods at

programming levels only. As a part of profiling, optimized

codes of B-Tree & B+-Tree method found on web are

compiled to get the best results [26-28].

5. RESULT AND ANALYSYS
In this section various test result outputs with graphs & an

analysis of the proposed technique with others has been given.

Note: Proposed Technique & B+-Tree stores key-value

(Actual Data), where B-Tree stored only key; & this

exaggerated performance of B-Tree.

5.1 Windows Environment

5.1.1 Time complexity analysis

5.1.1.1 Insertion time
The graph in Figure 9 shows comparison of Insertion Time for

Proposed Technique with other techniques i.e. B-Tree & B+-

Tree in Windows environment. It can be seen that Proposed

Technique takes moderate time compared to other techniques.

5.1.1.2 Search time

Equality search
Test Results for SQL queries like “where ID=1” to “where

ID=15M” (Million = 106).

Figure 10 shows a graph of Search Time comparison (in

seconds) of records starting from 1M to 7M. Here Proposed

Technique takes more time than other two but what happens

when records increase beyond 7 million?

Fig 9: Insertion time comparison-Windows

Fig 10: Search time comparison 1-Windows

In Figure 11, it can be seen that Proposed Technique takes

almost same time as taken by B-Tree.

However the performance of B+-Tree is degraded. Because of

consumption of more space by B+-Tree led to memory

overflow and hence system experienced page faults.

Range search
Test Results for SQL Queries like “where ID>=1 and

ID<=1M” to “where ID>=1 and ID<=15M”.

Fig 11: Search time comparison 2-Windows

In case of B-Tree, Range Search is not as simple as the other

two.

For testing purpose „get all records‟ (Traverse function) is

used to obtain Range Search Time.

International Journal of Computer Applications (0975 – 8887)

Volume 109 – No. 4, January 2015

18

Fig 12: Comparison of Search Time for Range queries 1-

Windows

Figure 12 shows a graph of Comparison of Range Search

Time of records starting from 1M to 7M.

Fig 13: Comparison of Search Time for Range queries 2-

Windows

Graph in Figure 13 shows that proposed technique operates

near to B-Tree. Here, records up to 15 million have been

considered for Range Search.

It can be observed that, in case of B+-Tree performance is

decreased just like it did in Equality Search Time scenario due

to more memory requirement.

5.1.2 Space complexity analysis

Fig 14: Comparison of space requirement - Windows

Figure 14 shows a graphical view of space utilization during

Equality Search & Range Search by all the techniques.

Proposed Technique takes moderate & nearly constant space

then other two techniques.

5.2 Linux environment

5.2.1 Time complexity analysis

5.2.1.1 Insertion time

Fig 15: Insertion time comparison -Linux

Figure 15 shows graphical representation of test data collected

for Insertion Time in Linux environment.

It can be observed that Proposed Technique operates near to

B+-Tree.

5.2.1.2 Search time

Equality search
Figure 16 shows a graphically view of test data collected for

Search Time in Linux environment for Equality Search query.

Here Proposed Technique takes more time than others.

Note: Here the tool used was not able to compute the records

more than the capacity of RAM, so as with Windows, it was

not possible to evaluate performance of B+-Tree for more than

20M records.

Fig 16: Search Time comparison for Equality Search

query-Linux

Range search
Figure 17 shows graphical view of test results for Range

Search query in Linux environment.

For Range Search, Proposed Technique performs better than

B-Tree & B+-Tree.

International Journal of Computer Applications (0975 – 8887)

Volume 109 – No. 4, January 2015

19

Fig 17: Search Time comparison for Range Search query-

Linux

5.2.2 Space complexity analysis

Fig 18: Space utilization comparison-Linux

Figure 18 shows graphical view of space utilization. It can be

seen that Proposed Technique and B-Tree lines overlap each

other. Thus it proves that authors were able to achieve the

“All data at leaf level” by using same amount of space as B-

Tree & saved ~50% space as compared to B+-Tree.

5.2.3 Cache miss analysis
Cache miss is a failed attempt to read a piece of data in the

cache.

There are three kinds of cache misses: Instruction Read miss,

Data Read miss and Data Write miss.

5.2.3.1 Insertion, equality & range search cache

miss
Figure 19 shows column view of the statistics collected for

cache miss during all 3 operations being performed on the

Proposed Technique.

With Cachegrind tools in Linux; cache misses during

Insertion, Equality Search and Range Search queries by all the

three candidate techniques was measured for this experiment.

In 1st graph, it can be seen that B+-Tree experience the

highest no. of cache misses i.e. Data write miss in First Level

& Last Level of cache. On the other hand B-Tree & Proposed

Technique operates moderately compared to B+-Tree.

In 2nd graph, it can be seen that Proposed Technique

outperform the other two technique – works best for Equality

Search query, by experiencing lowest no. of cache misses in

reading data.

In 3rd graph, it can be observed that B-Tree & Proposed

Technique experience almost same no. of cache miss in data

writes at First & Last level. On the other hand data read miss

at both the level is moderate.

Note: There were two reasons why B-Tree performed better.

First reason was that, the code used for B-Tree [27, 28] while

testing was just implementation of its algorithm. It was not

pointing to any record data like B+-Tree [26] and Proposed

Index techniques did. This led to performance improvement of

B-Tree as there was no overhead of managing pointers for
actual data in every operation.

Secondly, one study of worst case and average case behaviors

of B-trees concludes that “adding periodic rebuilding of the

tree, . . . the data structure . . . is theoretically superior to

standard B+-trees in many ways [and]. . . rebalancing on

deletion can be considered harmful”[29].

Fig 19: Cache misses during Insertion, Search & Range Search Operations-Linux

6. CONCLUSION
The most used database indexing methods in prevalent

database systems have been discussed. Considering the

applications which involve immense processing of data, based

on natural numbers; ranging from bank transaction to railway

ticket reservation, telephone number directory to order

tracking in e-commerce, authors found that due to inherent

complexity of structure & management in the existing

methods the database system experiences performance

degradation. The authors were able to achieve better

performance in new technique because the total numbers of

levels in the index structure are equal to the length of the

International Journal of Computer Applications (0975 – 8887)

Volume 109 – No. 4, January 2015

20

natural number i.e. ID digits. Further the proposed technique

structure does not involve any splitting, so it results in very

less overhead compared to other two methods B-Tree & B+-

Tree. The results of the experiment carried out clearly states

that proposed technique gives best performance in Linux

environment for Range Search. Beside this, it also offers less

memory footprint compared to other candidates of

experiment. Even further it outperformed others in case of

number of cache misses, during the most vital operation of

any Database System „Search‟. In all, the Proposed Technique

gives advantages in terms of speed, space & management

point of view compared to the most used database indexing

methods like B-Tree & B+-Tree.

With minor changes Proposed Technique has potential to

replace B+-Tree & B-Tree for most of their applications. I.e.

for string data, date time data, random numbers etc.

7. ACKNOWLEDGMENTS
We are grateful to our Guide Dr. Hiren Joshi for giving us the

opportunity of working under his guidance for research in the

area of Database Indexing. He has shared his valuable

knowledge in each and every step for this ambitious work

throughout. His time-to-time suggestion and knowledge

imparted in the domain of Analytics was the back bone for the

work presented. Our deepest thank to our Guide Mr. Yatrik

Patel for the knowledge he delivered in the field of database

and also for the valuable time which he spent for guiding in

further enhancement in the research work. His guidance has

always inculcated confidence in us.

8. REFERENCES
[1] Ramakrishnan, R., and J. Gehrke. "Database

Management Systems." (2003)..

[2] Silberschatz, Abraham, H. Korth, and S. Sudarshan.

"Database System Concepts", 2010.

[3] Pachev, Alexander, and Sasha Pachev. Understanding

MySQL Internals. " O'Reilly Media, Inc.", 2007.

[4] Graefe, Goetz, and Harumi Kuno. "Modern B-tree

techniques." In Data Engineering (ICDE), 2011 IEEE

27th International Conference on, pp. 1370-1373. IEEE,

2011.

[5] Knuth, D. E. "The art of computer programming: Sorting

and Searching, 2nd edn., vol. 3." (1998).

[6] Ashok Rathi, Huizhu Lu, G.E. Hedrick, “Performance

Comparison Of Extendible Hashing And Linear Hashing

Techniques”, 1990

[7] Zobel, Justin, Steffen Heinz, and Hugh E. Williams. "In-

memory hash tables for accumulating text vocabularies."

Information Processing Letters 80, no. 6 (2001): 271-

277.

[8] Askitis, Nikolas, and Justin Zobel. "Cache-conscious

collision resolution in string hash tables." In String

Processing and Information Retrieval, pp. 91-102.

Springer Berlin Heidelberg, 2005.

[9] Heileman, Gregory L., and Wenbin Luo. "How Caching

Affects Hashing." In ALENEX/ANALCO, pp. 141-154.

2005.

[10] Peterson, W. W. (1957), „Open addressing‟, IBM

Journalof Research and Development 1(2), 130–146.

[11] Askitis, Nikolas. "Efficient data structures for cache

architectures." PhD diss., PhD thesis, RMIT University.

RMIT Technical Report TR-08-5. http://www. cs. rmit.

edu. au/naskitis, 2007.

[12] Stein, Clifford, T. Cormen, R. Rivest, and C. Leiserson.

"Introduction to algorithms." The MIT Press 31 (2001):

77.

[13] Pagh, Rasmus, and Flemming Friche Rodler. "Cuckoo

hashing." Journal of Algorithms 51, no. 2 (2004): 122-

144.

[14] Dietzfelbinger, Martin, Michael Mitzenmacher, and

Michael Rink. "Cuckoo hashing with pages." In

Algorithms–ESA 2011, pp. 615-627. Springer Berlin

Heidelberg, 2011.

[15] Fountoulakis, Nikolaos, Konstantinos Panagiotou, and

Angelika Steger. "On the insertion time of cuckoo

hashing." SIAM Journal on Computing 42, no. 6 (2013):

2156-2181.

[16] Jang, Joonhyouk, Yookun Cho, Jinman Jung, and

Gwangil Jeon. "Enhancing lookup performance of key-

value stores using cuckoo hashing." In Proceedings of

the 2013 Research in Adaptive and Convergent Systems,

pp. 487-489. ACM, 2013.

[17] Drmota, Michael, and Reinhard Kutzelnigg. "A precise

analysis of cuckoo hashing." ACM Transactions on

Algorithms (TALG) 8, no. 2 (2012): 11.

[18] Askitis, Nikolas. "Fast and compact hash tables for

integer keys." In Proceedings of the Thirty-Second

Australasian Conference on Computer Science-Volume

91, pp. 113-122. Australian Computer Society, Inc.,

2009.

[19] Bayer, Rudolf. "The universal B-tree for

multidimensional indexing: General concepts." In

Worldwide Computing and Its Applications, pp. 198-209.

Springer Berlin Heidelberg, 1997.

[20] Bumbulis, Peter. "System and methodology for providing

compact B-Tree." U.S. Patent 6,694,323, issued February

17, 2004.

[21] Grant Fritchey and Sajal Dam, “SQL Server 2008 Query

Performance Tuning Distilled”, Apress 2009.

[22] Sartaj Sahani,Dinesh P Mehta,“Tries” in Handbook of

datastructures & Applications, Chapman & Hall/CRC,

US 2005.

[23] Stefan Björnson, “Management in data structures”,

EP1040430 B1, July 3 2009.

[24] “Oracle® Database, Performance Tuning Guide,” 12c

Release 1 (12.1), accessed February 20, 2014.

http://docs.oracle.com/cd/E16655_01/server.121/e15857/

title.htm

[25] “MySQL 5.6 Reference Manual”, Accessed February 22,

2014.

https://dev.mysql.com/doc/refman/5.5/en/optimization-

indexes.html

[26] B+-Tree code, version 1.12, http://www.amittai.com/

[27] B-Tree code, http://www.geeksforgeeks.org/b-tree-set-1-

insert-2/

[28] Introduction to Algorithms 3rd Edition by Clifford Stein,

Thomas H. Cormen, Charles E. Leiserson, Ronald L.

Rivest.

[29] S. Sen and R. E. Tarjan, “Deletion without rebalancing in

multiway search trees,” ISAAC, pp. 832–841, 2009

IJCATM : www.ijcaonline.org

