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Mining Frequent Item Sets More Efficiently Using ITL Mining
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Abstract

Correlated The discovery of association rules is an important problem in data mining. It is
a two-step process consisting of finding the frequent itemsets and generating association
rules from them. Most of the research attention is focused on efficient methods of finding
frequent itemsets because it is computationally the most expensive step. This paper presents
a new data structure and a more efficient algorithm for mining frequent itemsets from typical
data sets. The improvement is achieved by scanning the database just once and by reducing
item traversals within transactions. The performance comparisons of the algorithm against
the fastest Apriori implementation and the recently developed H-Mine algorithm are given
here. These results show that the algorithm outperforms both Apriori and H-mine on several
widely used test data sets.
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0. Introduction

Association Rules are used to identify relationships among sets of items. They are relevant to several
domains such as the analysis of market basket transactions in retail stores, target marketing, fraud
detection, finding patterns in telecommunication alarms, etc. In retail stores for example, this information
is useful to increase the effectiveness of advertising, marketing, inventory control, and stock location on
the shop floor. Since the introduction of association rules a decade ago [1], a large number of increasingly
efficient algorithms have been proposed [2,3,4,5,6,7].

The process of mining association rules consists of two steps :

1) Find the frequent itemsets that have minimum support;

2) Use the frequent itemsets to generate association rules that meet the confidence threshold.

Between these two steps, step 1 is the most expensive since the number of itemsets grows exponentially
with the number of items. The strategies developed to speed up this process can be divided into two
categories. The first is the candidate generation-and-test approach. Algorithms in this category include
Apriori and its several variations [1,2,13,14,15,16]. They use the Apriori property also known as
antimonotone property that any subset of a frequent item set must be a frequent item set. In this approach,
a set of candidate item sets of length n + 1 is generated from the set of item sets of length n and then each
candidate item set is checked to see if it meets the support threshold. The second approach of pattern-
growth has been proposed more recently.

It also uses the Apriori property, but instead of generating candidate item sets, it recursively mines
patterns in the database counting the support for each pattern. Algorithms in this category include
TreeProjection [7], FP-Growth [3,14,15] and H-Mine [4]. Algorithms based on candidate generation and
test such as Apriori runs very slowly on long pattern data sets because of the huge number of candidate
itemsets it has to generate and test.
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Testing the candidate itemsets for minimum support requires scanning the whole database many times,
although for some small to moderate size databases, the scan can be made faster by storing the
database in main memory. The problem of generating candidates can be avoided by using the pattern-
growth approach.

For most data sets, these algorithms perform better than Apriori. Among the existing pattern-growth
algorithms, H-Mine runs faster than TreeProjection and FP-Growth on several commonly used test data
sets. H-mine scans the transaction database twice. It performs repeated horizontal traversals of the
transactions in memory while generating frequent itemsets. H-Mine also needs to continually re-adjust
the links between transactions in its H-struct data structure during the mining process. If these costs are
reduced, the mining process will be improved further.

A more efficient algorithm based on the pattern-growth approach is introduced here. It reduces the cost
by scanning the database only once, by significantly reducing the horizontal traversals of the transactions
in memory and keeping the links between transactions in memory unchanged during the mining process.
To achieve these reductions in cost, a new data structure called Item-Trans Link (ITL) and the new
algorithm called ITL-Mine is presented.

The performance of ITL-Mine is compared with Apriori and H-Mine algorithms and found that ITL-Mine
performs better on a range of widely used test data sets. H-mine was chosen for performance comparisons
because it is an improvement over FP-Growth and TreeProjection algorithms. The H-Mine algorithm is
based on its description in [4]. The Apriori program used is from [11], which is generally acknowledged as
the fastest Apriori implementation available.

 Tid  Items 

1      3  4  5  6  7  9 

2      1  3  4  5  13 
3      1  2  4  5  7  11 

4       1  3  4  8 

Tid   1  2  3  4  5  6  7  8  9  10  11 12  13 
  
1       0  0  1  1  1  1  1  0  1   0   0    0    0   

2       1   0 1  1  1  0  0  0  0   0    0   0   1 

3       1  1  0  1  1  0  1  0  0   0    1   0   0 

4       1  0  1  1  0  0  0  1  0   0   0    0    0   

Fig. 1. The Transaction Database

1. Definitions and ITL Data Structure

This section defines the terms used for describing association rule mining. The conceptual basis for
design of the data representation is presented followed by a description of the ITL data structure.

1.1 Definition of Terms

The basic terms needed for describing association rules using the formalism of [1,13,14,15]. Let I={i1,
i2, … , in} be a set of items, and D be a set of transactions, where a transaction T is a subset of I (T Í I).
Each transaction is identified by a TID. An association rule is an expression of the form X Þ Y, where X Ì
I, Y Ì I and X Ç Y = Æ. Note that each of X and Y is a set of one or more items and the quantity of each item
is not considered. X is referred to as the body of the rule and Y as the head.

An example of association rule is the statement that 80% of transactions that purchase A also purchase
B and 10% of all transactions contain both of them. Here, 10% is the support of the itemset {A, B} and 80%
is the confidence of the rule A Þ B. An itemset is called a frequent itemset if its support is greater than or
equal to a support threshold specified by the user, otherwise the itemset is not frequent. A k-frequent
itemset is a frequent itemset that contains k items.
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1.2 Binary Representation of Transactions

The transactions in the database could be represented as a binary table [1] as shown in Figure 1.
Counting the support for an item can be considered as counting the number of 1’s for that item in all the
transactions. In most datasets, the number of items in each transaction is much smaller than the total
number of items, and therefore the binary table representation will not allow efficient use of memory.
Therefore, use a more efficient representation scheme.

1.3 Item-Trans Link (ITL) Data Structure

Researchers have proposed various data representation schemes for association rule mining. They can
be broadly classified as horizontal data layout, vertical data layout, and a combination of the two. Most
candidate generation and test algorithms (e.g. Apriori) use the horizontal data layout and most pattern-
growth algorithms like FP-Growth and H-Mine use a combination of vertical and horizontal data layouts.
A data structure called Item-Trans Link (ITL) that combines the vertical and horizontal data layouts is
proposed (see Figure 2).

The data representation used by the algorithm is based on the following observations :

1. Item identifiers may be mapped to a range of integers.

2. Transaction identifiers can be ignored provided the items of each transaction are linked together.

ITL consists of an item table (ItemTable) and the transactions linked to it (TransLink) as follows:

1. ItemTable: It contains all the items and the support of each item. It also has a link to the first
occurrence of each item in the transactions of TransLink described below.

2. TransLink: It represents the items of every transaction for all the transactions in the database. The
items of a transaction are arranged in sorted order.

 Item      1      3      4     5     7 
Count    3      3      4     3     2  

3      4      5     7 

1      3     4      5 

1       4     5     7 

1      3      4  

Item Table 

Translink 

Fig. 2. The Item-Trans Link (ITL) Data Structure
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For each item in a transaction, it contains a link to the next occurrence of that item in another transaction.
In other words, this link will represent all the 1’s for each item so that the counting can be done quickly.
For example, in Figure 2, to check the occurrences of item 7, go to the cell of 7 in tid 1 in the TransLink and
then directly to the next occurrence of 7 in tid 3 without traversing tid 2. Since ITL has features of both
horizontal and vertical data layouts, it is general and flexible enough to be used by algorithms that need
horizontal, vertical or combined data layout. It also makes it possible to combine existing ideas for
efficient mining based on both layouts.

ITL is similar to H-struct proposed in [4], except for the vertical links between the occurrences of each item
in the transactions. In H-struct, the links always point to the first item of the transaction, and therefore to
get a certain item, traverse the transaction from the beginning. ITL points directly to the occurrence of the
item which makes it faster to traverse all occurrences of an item.

2. ITL-Mine Algorithm

This section describes the ITL-Mine algorithm, and provides a running example. ITL-Mine assumes that
the ItemTable and TransLink will fit into main memory. With the availability of increasingly larger sizes of
main memory that currently approach gigabytes, many small to moderate databases will fit in the main
memory. However, the extension of this algorithm to mine very large databases is currently in progress.

There are three steps in the ITL-Mine algorithm as follows:

? Construct ItemTable and TransLink: In this step, the ItemTable and TransLink are constructed by
a single scan of the transaction database. At the end of this step, the 1-frequent itemsets will be
identified in the ItemTable by the support count.

? Prune: Using the anti-monotone property, the infrequent items are pruned or deleted from the
TransLink since infrequent items will not be useful in the next step.

? Mine Frequent Itemsets: In this step, all the frequent itemsets of two or more items are mined
using a recursive function as described further in this section.

Example 1 : The ITL-Mine algorithm is illustrated by this example. Let Table 1 be the transaction database
and suppose the user wants to get the Frequent Itemsets with minimum support = 50% (minimum 2
transactions). In Step 1, all transactions in the database are read in a single scan to construct the
ItemTable and TransLink. For each item in a transaction, the existence of the item in the ItemTable is
checked. If the item is not present in the ItemTable, it is entered with an initial count of 1, otherwise the
count of the item is incremented. After that, the item is entered in the proper location in the TransLink.

3. Procedure Construct-ITL

For all transactions in the DB

For all items in transaction

If item in ItemTable

Increment count of item

Else

Insert item with count = 1
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End If

Insert Item into TransLink

Connect link of previous

occurrence to this item

End For

End For

Procedure Prune-ITL

For all xÎItemTable where count(x)< min_sup

Delete x from ItemTable and TransLink

End For

Procedure Mine-FI

For all xÎItemTable

Add x to the set of Frequent Itemsets

Prepare and fill tempList for x

For all yÎtempList where count(y)³min_sup

Add xy to the set of Frequent Itemsets

For all zÎtempList after y

where count(z) ³min_sup

RecMine (xy, z)

End For

End For

End For

Procedure RecMine(prefix, test_item)

tlp:= tid-list of prefix

tli:= tid-list of test_item

tl_current = Intersect(tlp,tli)

If size(tl_current) ³?min_sup

new_prefix:= prefix + test_item

Add new_prefix to the set of Frequent

Itemsets
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For all zÎ tempList after test_item

Where count (z) ³ ?min_sup

RecMine(new_prefix, z)

End For

End If

Fig. 4. Algorithms for Construct, Prune and Mine-FI and the links are made.

Prefix TempList (count) Freq-Itemsets (count)

1 3 (2), 4 (3), 5 (2), 7 (1) 1 (3), 1   3  (2), 1   4 (3), 1   5 (2)

1   3 4 (2), 5 (1) 1 3 4 (2)

1   4 5(2), 7(1) 1   4   5 (2)

3 4 (3), 5 (2), 7 (1) 3(3), 3 4 (3), 3 5 (2)

3   4 5 (2), 7(1) 3 4 5 (2)

4 5 (3), 7(2) 4 (4), 4   5  (3), 4   7 (2)

4   5 7 (2) 4    5    7  (2)

5 7(2) 5  (3), 5    7  (2)

7 None 7(2)

Fig. 3. Mining Frequent Itemsets Recursively Support of frequent itemsets shown in brackets)

On completing the database scan, the 1-frequent itemsets can be identified in the ItemTable as {1, 3, 4,
5, 7}. In Step 2, all items in the ItemTable are traversed to prune the infrequent items. If the support count
of an item in the ItemTable is below the minimum, it is removed from both the ItemTable and the TransLink.
The pruning is done by following the link from the ItemTable to traverse all the occurrences of that item in
the TransLink. After the pruning, the TransLink is as shown in Figure 2.

In the last Step, each item in the ItemTable will be used as a starting point to mine all longer frequent
itemsets for which it is a prefix. As an example, starting with item 1, follow the link to get all other items that
occur together with item 1. Items that occur together with item 1 will be registered in a simple table that
called TempList together with their support count and list of tids. As in Figure 3, for prefix 1, items {3, 4, 5}
that are frequent (their support ³ 2). Generating the frequent patterns for this step involves simply
concatenating the prefix with each frequent-item.

As an example, the frequent itemsets for this step are 1 3 (2), 1 4 (3) and 1 5 (2). After generating the 2-
frequent-itemsets for prefix 1, since we have got the tid-list of each item in the TempList, we can recursively
use the tid intersection scheme to generate the subsequent frequent itemsets. For example, we can use
the tid-list of 3 and intersect with tid list of 5 to generate frequent itemsets 1 3 5. At the end of recursive
calls with prefix item 1, all frequent itemsets that contains item 1 will be generated: 1 (3), 1 3 (2), 1 4 (3),
1 5 (2), 1 3 4 (2), 1 4 5 (2). In the next sequence, item 3 will be used to generate all frequent itemsets that
contain item 3 but does not contain item 1. Then item 5 will be used to generate all frequent itemsets that
contain item 5 but does not contain items 1 and 3. The algorithm of ITL-Mine is shown in Figure 4.
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3. Performance Study
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Fig. 5. Performance comparison of Apriori, H-Mine and ITL-Mine on chess datasets

In this section, the performance evaluation of ITL-Mine is presented. All the tests were performed on an
866MHz Pentium III PC, with 128 MB RAM and 30 GB HD running Microsoft Windows 2000. ITL-Mine is
written in Microsoft Visual C++ 6.0. In this paper, the runtime includes both CPU time and I/O time.

The chess dataset has been used to test the performance Chess (3196 trans, max 37 items per trans).
The Chess dataset is derived from the steps of Chess games. Chess is dense dataset since it produces
many long patterns of frequent itemsets for very high values of support. It is downloaded from [9].
Comparison of ITL-Mine with the fastest available Apriori implementation [12] and the implementation of
H-Mine. Performance comparison of Chess dataset is shown in Figure 5. The result shows that ITL-Mine
outperforms Apriori and H-Mine on these datasets for the given parameters.

4. Discussion

The algorithm follows the pattern growth approach without candidate generation, so it is compared with
H-Mine, the most recently proposed algorithm of this class. H-Mine is also considered to be more
efficient than TreeProjection and FP-growth algorithms [4]. The better performance of the algorithm is:

? This algorithm traverses the database only once and performs the rest of the mining process
using ITL. H-mine performs two scans of the database to build the H-struct data structure.

? After the ITL data structure is constructed and pruned to remove infrequent 1-itemsets, it remains
unchanged while mining all of the frequent patterns. In H-Mine, the pointers in the H-struct need to
be continually readjusted during the extraction of frequent patterns and so needs additional
computation.

? ITL-Mine uses a simple temporary table called TempList during the recursive extraction of frequent
patterns. ITL-Mine stores the tid-list of each item in the TempList and uses tid intersection scheme
to generate frequent patterns. The TempList stores only the information for the current recursive
call and the space will be reused for the subsequent recursive calls. H-Mine builds a series of
header tables linked to the H-struct and it needs to change pointers to create or re-arrange
queues for each recursive call.

Mining Frequent Item Sets More Efficiently Using ITL Mining



307

? The recursive calls in H-Mine also involve repeated traversals of relevant parts of the H-struct. ITL-
Mine avoids these repeated traversals by using the tid intersections. So the additional computation
required by H-Mine to extract the frequent itemsets from Hstruct are more than for ITL-Mine. It
supports more efficient interactive mining, where the user may experiment with different values of
minimum support levels. In this case the pruning step would be skipped. Using the constructed
ItemTable and TransLink in the memory, if the user wants to change the value of support threshold,
there is no need to re-read the transaction database.

5. Conclusion

In this paper, a generic data structure called Item-Trans Link (ITL) and a new algorithm called ITL-Mine for
discovering frequent itemsets is presented. The algorithm needs to scan the transaction database only
once. The performance of ITL-Mine is compared against Apriori and H-Mine on chess dataset and the
result show that ITL-Mine outperforms both Apriori and H-Mine on the data set for the given ranges of
support levels. Assume that the ItemTable and TransLink will fit into main memory.

However, this assumption will not apply for huge databases. The extension of ITL-Mine for very large
databases is currently underway. Several researchers have investigated ways to reduce the size of
frequent itemsets to manageable levels for users and to allow greater user focus in the mining process
[8]. User-specified constraints on the mining process represent a promising approach to this problem.
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