Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of INFLIBNET IR
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Senthamarai, C"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Mining of Confidence-Closed Correlated Patterns Efficiently
    (INFLIBNET Centre, 2005-02-02) Hemalatha, R; Krishnan, A; Senthamarai, C; Hemamalini, R
    Correlated pattern mining has become increasingly important recently as an alternative or an augmentation of association rule mining. Though correlated pattern mining discloses the correlation relationships among data objects and reduces significantly the number of patterns produced by the association mining, it still generates quite a large number of patterns. This paper proposes closed correlated pattern mining to reduce the number of the correlated patterns produced without information loss. A new notion of the confidenceclosed correlated patterns is proposed first, and then an efficient algorithm is present, called CCMine, for mining those patterns. Confidence closed pattern mining reduces the number of patterns by at least an order of magnitude. It also shows that CCMine outperforms a simple method making use of the traditional closed pattern miner. Confidence-closed pattern mining is a valuable approach to condensing correlated patterns.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback