Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of INFLIBNET IR
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Echeverria, Mercedes"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Potential Predictibility of References in the Identification of Derivative Articles from Doctoral Theses
    (INFLIBNET Centre, 2015-03-12) Echeverria, Mercedes; Stuart, David; Blanke, Tobias
    This paper reports the results obtained on the predictability of references for the identification of derivative articles from doctoral theses, based on a sample of 68 medical theses and 334 articles published by the same theses authors. The study performs an analysis of the common references shared by theses and articles through a text similarity approach. A textual similarity comparison is carried out with the discursive sections of articles (Introduction, Methodology, Results and Discussion) based on the full-text of theses and articles. The results suggest that the Reference section has a high sensitivity to detect true positives cases and a low specificity to identify negative cases, corresponding to a high recall a low precision in the detection of derivative articles.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback