TABLE OF CONTENTS

Acknowledgement .. III
Preface... IV
List of Figures .. XII
List of Tables .. XV
Abbreviations .. XVII
Nomenclature .. XVIII

1. Introduction ... 01
 1.0 Introduction .. 02
 1.1 Background of the proposed research .. 04

2. Literature survey ... 06
 2.1 Characteristics of jet .. 07
 2.1.1 Behavior of jet .. 07
 2.1.2 Types of primary atomization ... 10
 2.1.3 Mechanical primary atomization ... 11
 2.1.4 Effect of various variables on liquid jet breakup 13
 2.1.5 Secondary atomization .. 17
 2.2 Bubble dynamics and interface phenomenon ... 20
 2.2.1 Flow pattern .. 20
 2.2.2 Bubble size ... 23
 2.2.3 Bubble size distribution .. 24
 2.2.4 Measurement techniques of bubble size .. 26
 2.2.5 Correlations for entrainment, bubble diameter, drag force and gas hold up
 2.2.6 Factors affecting the bubble size .. 30
 2.3 Performance of venturi scrubber ... 33
 2.3.1 Performance of high energy venturi scrubber .. 35
 2.3.2 Jet ejectors ... 41
 2.3.3 Parameters other than geometry of the ejector .. 50
 2.4 Gas absorption in jet ejector .. 54
 2.4.1 Methods of determination of interfacial area ... 54
2.4.2 Determination of interfacial area by chemical method

2.4.3 Determination of overall volumetric mass-transfer coefficient by chemical method

2.4.4 Limitations of the chemical method for the determination of mass transfer coefficient

2.4.5 Effect of the ejector geometry on the mass transfer characteristics

2.4.6 Factors effecting mass transfer characteristics

2.4.7 Use of jet ejector in reactor

2.4.8 Mass transfer characteristics in multi nozzle jet ejector

2.4.9 Mass transfer with chemical reaction

2.4.10 Reaction systems used to characterize mass transfer with chemical reaction

3. Experimental: equipment, set-up, procedure

3.0 Introduction

3.1 Setup 1

3.1.1 Experimental set up

3.1.2 Experimental procedure

3.2 Setup 2

3.2.1 Experimental set up

3.2.2 Experimental procedure

3.3 Setup 3

3.3.1 Experimental set up

3.3.2 Experimental procedure

4. Modeling and Simulation

4.0 Introduction

4.1 Prediction of absorption rate and reaction rate constant of chlorine into aqueous sodium hydroxide solution

4.1.1 Model for the absorption of chlorine into aqueous NaOH solution based on penetration theory

4.1.1.1 Concentration of an individual chemical species in bulk of liquid

4.1.1.2 Mass balance at interface applying Higbie's penetration model
4.1.1.3 Numerical solution and its implementation 90
4.1.2 Results and discussion 92
4.1.3 Conclusion 96
4.2 Effect of the diffusivities on absorption of chlorine into aqueous sodium hydroxide solution 97
 4.2.1 Mechanism of chemical absorption 98
 4.2.2 Mathematical models related to absorption 99
 4.2.3 Results and discussion 108
 4.2.4 Conclusion 112
4.3 Numerical model of rate of absorption in multi nozzle jet ejector 113
 (chlorine-aqueous NaOH solution)
 4.3.1 Mathematical modeling 114
 4.3.2 Results and discussions 117
 4.3.3 Conclusion 119
4.4 Mass transfer characteristics in multi nozzle jet ejector 120
 4.4.1 Hold up 120
 4.4.2 New model to predict mass transfer characteristics, \(k_c \) and \(\alpha \) 122
 4.4.3 New mathematical model related to interfacial area for multi nozzle ejectors
 4.4.4 Results and discussions 126
 4.4.4.1 Comparison of experimental results of mass transfer characteristics with simulated results 126
 4.4.4.2 Factors affecting rate of absorption (\(R_A \)) in liquid jet ejector 134
 4.4.4.3 Effect of different parameters on mass transfer characteristics (\(k_g \alpha, \alpha \) and \(k_g \)) in jet ejectors 135
 4.4.5 Conclusion 137
4.5 Removal efficiency of chlorine in jet ejector 138
 (Chlorine aqueous NaOH solution)
 4.5.1 Statistical modeling 139
 4.5.2 Results and discussions 139
 4.5.2.1 Statistical analysis 142
4.5.2.2 Results of statistical analysis in STATGRAPHICS Plus 4 for different nozzles

4.5.2.3 Interpretation of the results of statistical analysis in STATGRAPHICS Plus 4 for different nozzles

4.5.2.4 Interpretation of figures (graphs)

4.5.3 Conclusion

5. Future scope of work

Appendices

Appendix - 1 Experimental data
Appendix - 2 Analytical procedure
Appendix - 3 Prediction of physical properties
Appendix - 4 Calculation of liquid holdup, \(a, k_g \alpha\) and \(k_g\)
Appendix - 5 Photographs of experiments

References

x