## CONTENTS

<table>
<thead>
<tr>
<th>Preface</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>I - VII</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER-1: Introduction to Corrosion and Corrosion Inhibitors</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Section -I: Corrosion</strong></td>
</tr>
<tr>
<td>1.1.1. Introduction</td>
</tr>
<tr>
<td>1.1.2. Theories and mechanism of corrosion</td>
</tr>
<tr>
<td>1.1.2.1. Local cell theory</td>
</tr>
<tr>
<td>1.1.2.2. Wagner and Trauds’ theory</td>
</tr>
<tr>
<td>1.1.3. Classification of corrosion</td>
</tr>
<tr>
<td>1.1.3.1. Uniform or general corrosion</td>
</tr>
<tr>
<td>1.1.3.2. Galvanic corrosion</td>
</tr>
<tr>
<td>1.1.3.3. Localized corrosion</td>
</tr>
<tr>
<td>1.1.3.4. Stress corrosion cracking</td>
</tr>
<tr>
<td>1.1.3.5. Erosion corrosion</td>
</tr>
<tr>
<td>1.1.4. Rate of corrosion</td>
</tr>
<tr>
<td>1.1.5. Factors influencing the corrosion rate</td>
</tr>
<tr>
<td>1.1.5.1. Nature of the metal</td>
</tr>
<tr>
<td>1.1.5.2. Surface state of the metal</td>
</tr>
<tr>
<td>1.1.5.3. Protective film</td>
</tr>
<tr>
<td>1.1.5.4. pH of the medium</td>
</tr>
<tr>
<td>1.1.5.5. Temperature of the medium</td>
</tr>
<tr>
<td>1.1.5.6. Effect of dissolved oxygen</td>
</tr>
</tbody>
</table>

| **Section - II: Corrosion inhibitors**                         |
| 1.2.1. Introduction                                           |
| 1.2.2. Mechanism of corrosion inhibition                      |
| 1.2.3. Classification of corrosion inhibitors                 |
| 1.2.3.1. Passivating inhibitors                               |
| 1.2.3.2. Volatile inhibitors                                  |
| 1.2.3.3. Cathodic inhibitors                                  |
1.2.3.4. Anodic inhibitors  
1.2.3.5. Mixed inhibitors  
1.2.3.6. Synergistic inhibitors  
1.2.3.7. Precipitation inhibitors  
1.2.3.8. Green corrosion inhibitors  
1.2.4. Adsorption  
1.2.5. Polarization  
1.2.6. Electrochemical impedance  
1.2.7. Quantum chemical calculations  

**Section - III: Antioxidant activity and corrosion inhibition**  
**Section - IV: Corrosion inhibition studies on mild steel: A review**  
**Section - V: Scope of the present work**  

**Literature Cited**

**CHAPTER-2 : Experimental Work**

2.1. Introduction  
2.2. Materials  
2.2.1. Preparation of electrode surface  
2.2.2. Preparation of solutions  
2.2.3. Inhibitors  
2.3. Methods  
2.3.1. Mass loss measurements  
2.3.2. Potentiodynamic polarization measurements  
2.3.3. Electrochemical impedance spectroscopy  
2.3.4. FTIR Spectroscopy  
2.3.5. Scanning electron microscopy  
2.3.6. Energy dispersive analysis of X-ray (EDAX)  
2.3.7. Quantum chemical calculations  
2.3.8. Antioxidant activity  
2.3.8.1. DPPH method  
2.3.8.2. Hydroxyl radical scavenging activity  
2.3.8.3. Nitric oxide radical scavenging assay  

**Literature Cited**
### CHAPTER-3: Synthesis of New Pyridine Based 1,3,4-Oxadiazole Derivatives and their Corrosion Inhibition Performance on Mild Steel in Hydrochloric Acid

#### 3.1. Introduction

82

#### 3.2. Synthesis of inhibitors

3.2.1. Synthesis of 2-methyl-2-{4-[5-(6-methylpyridin-2-yl)-[1,3,4]oxadiazol-2-yl]-phenyl}-propionitrile (6-MMOPP) 84

3.2.2. Synthesis of 2-methyl-6-(5-pyridin-4-yl-[1,3,4]oxadiazol-2-yl)-pyridine (5-MPOP) 85

3.2.3. Synthesis of 2-[5-(4-bromo-phenyl) [1,3,4]oxadiazol-2-yl]-6-methyl-pyridine (4-BPOMP) 85

#### 3.3. Results and discussion

3.3.1. Characterization of inhibitors 87

3.3.2. Potentiodynamic polarization measurements 94

3.3.3. Electrochemical impedance spectroscopy 98

3.3.4. Weight loss measurements

3.3.4.1. Effect of inhibitor concentration 103

3.3.4.2. Effect of temperature 103

3.3.4.3. Adsorption isotherm 111

3.3.5. Morphological investigation

3.3.5.1. SEM analysis 116

3.3.5.2. EDAX analysis 117

3.3.5.3. IR spectral studies 119

3.3.6. Quantum chemical calculations 121

3.3.7. Mechanism of corrosion inhibition 124

3.3.8. Antioxidant activity and corrosion inhibition 127

#### 3.4. Conclusion

128

### Literature Cited

130

### CHAPTER-4: Influence of Some Synthesized Pyrimidine Derivatives on Corrosion Inhibition of Mild Steel in Hydrochloric Acid Medium

#### 4.1. Introduction

133

#### 4.2. Synthesis of inhibitors
4.2.1. Synthesis of 6-methyl-4-morpholin-4-yl-2-oxo-1,2,3,4-tetrahydro pyrimidine-5-carboxylic acid ethyl ester (6-MMOTCE)

4.2.2. Synthesis of 6-methyl-4-morpholin-4-yl-2-thioxo-1,2,3,4-tetrahydro-pyrimidine-5-carboxylic acid ethyl ester (6-MMTTCE)

4.2.3. Synthesis of 6-methyl-4-morpholin-4-yl-2-oxo-1,2,3,4-tetrahydro-pyrimidine-5-carboxylic acid hydrazide (6-MMOTCH)

4.2.4. Synthesis of 6-methyl-4-morpholin-4-yl-2-thioxo-1,2,3,4-tetrahydro-pyrimidine-5-carboxylic acid hydrazide (6-MMTTCH)

4.3. Results and discussion

4.3.1. Characterization of inhibitors

4.3.2. Weight loss measurements
  4.3.2.1. Effect of inhibitor concentration
  4.3.2.2. Effect of temperature
  4.3.2.3. Adsorption isotherm

4.3.3. Electrochemical impedance spectroscopy

4.3.4. Potentiodynamic polarization

4.3.4. Morphological Investigation
  4.3.4.1. SEM analysis
  4.3.4.2. IR spectral studies

4.3.5. Evaluation of inhibitor efficiency

4.3.6. Antioxidant activity

4.3.7. Antioxidant activity and corrosion inhibition

4.4. Conclusion

Literature Cited

CHAPTER-5: Synthesis of New Benzimidazoles and their Corrosion Inhibition Performance on Mild Steel in Hydrochloric Acid Solution

5.1. Introduction

5.2. Synthesis of inhibitors
  5.2.1. Synthesis of 6-bromo-2-(3,4-dimethoxy-phenyl)-1H-benzoimidazole (BDB)
  5.2.2. Synthesis of 2-[3-(6-bromo-1H-benzoimidazol-2-yl)-phenyl]-2-methyl-propionitrile (BPMP)
  5.2.3. Synthesis of 6-bromo-2-(4-fluoro-phenyl)-1H-benzoimidazole (BFb)
5.3. Results and discussion

5.3.1. Characterization of inhibitors

5.3.2. Weight loss measurements
  5.3.2.1. Effect of inhibitor concentration
  5.3.2.2. Thermodynamic and activation parameters
  5.3.2.3. Adsorption isotherm

5.3.3. Potentiodynamic polarization

5.3.4. Electrochemical impedance spectroscopy

5.3.5. Morphological Investigation

5.3.6. Inhibition mechanism

5.3.7. Antioxidant activity and corrosion inhibition

5.4. Conclusion

Literature Cited

CHAPTER-6: Synthesis of Some New 1, 2, 4-Triazole Derivatives and their Anticorrosion Properties on Mild Steel in Hydrochloric Acid Medium

6.1. Introduction

6.2. Synthesis of inhibitors
  6.2.1. Synthesis of 1-(5-bromo-2-chloropyrimidin-4-yl)hydrazine (2)
  6.2.2. Synthesis of 1-(5-bromo-2-morpholinopyrimidin-4-yl) hydrazine (3)
  6.2.3. 2-(4-Propylbenzoylidenem)-1-(5-bromo-2-morpholinopyrimidin-4-yl) hydrazine (4a)
  6.2.4. 2-(2-Fluoro-3-methoxybenzoylidene)-1-(5-bromo-2-morpholinopyrimidin-4-yl) hydrazine (4b)
  6.2.5. 2-(2-Fluoro-5-methoxybenzoylidene)-1-(5-bromo-2-morpholinopyrimidin-4-yl) hydrazine (4c)
  6.2.6. 8-Bromo-5-morpholino-3-(4-propylphenyl)-[1,2,4]triazolo[4,3-c]pyrimidine (8-BMPTP)
  6.2.7. 8-Bromo-3-(2-fluoro-3-methoxyphenyl)-5-morpholino-[1,2,4]triazolo[4,3-c]pyrimidine (8-BFMMP)
  6.2.8. 8-Bromo-3-(2-fluoro-4,5-dimethoxy-phenyl)-5-morpholin-4-yl-[1,2,4]triazolo[4,3-c]pyrimidine (8-BFMDMP)
6.3. Results and discussion

6.3.1. Characterization of inhibitors

6.3.2. Antioxidant Activity

6.3.3. Weight Loss Measurements

6.3.3.1. Effect of inhibitor concentration

6.3.3.2. Thermodynamic and Activation Parameters

6.3.3.3. Adsorption Isotherm

6.3.4. Potentiodynamic Polarization

6.3.5. Electrochemical Impedance Spectroscopy

6.3.6. Morphological Investigation

6.3.7. Antioxidant Activity and Corrosion Inhibition

6.4. Conclusion

Literature Cited

CHAPTER-7: Corrosion Inhibition of Mild Steel in Hydrochloric Acid Solution by Some New Nitrogen Containing Organic Molecules

7.1. Introduction

7.2. Synthesis of inhibitors

7.2.1. Synthesis of (3-methoxy-phenoxy)-acetic acid ethyl ester (3)

7.2.2. Synthesis of (3-methoxy-phenoxy)-acetic acid hydrazide (3-MAH)

7.2.3. Synthesis of 4-amino-5-(3-methoxy-phenoxy)methyl)-4H-[1,2,4]triazole-3-thiol (4-AMTT)

7.2.4. Synthesis of 3-(3-Methoxy-phenoxy)methyl)-6-phenyl-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine (3-MPTT)

7.3 Results and discussion

7.3.1. Characterization of inhibitors

7.3.2. Weight Loss Measurements

7.3.2.1. Effect of inhibitor concentration

7.3.2.2. Effect of immersion time

7.3.2.3. Effect of temperature
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3.2.4. Adsorption isotherm</td>
<td>263</td>
</tr>
<tr>
<td>7.3.3. Electrochemical Impedance Spectroscopy (EIS)</td>
<td>267</td>
</tr>
<tr>
<td>7.3.4. Potentiodynamic polarization measurements</td>
<td>271</td>
</tr>
<tr>
<td>7.3.5. Scanning electron microscopy (SEM)</td>
<td>275</td>
</tr>
<tr>
<td>7.3.6. Mechanism of inhibition</td>
<td>277</td>
</tr>
<tr>
<td>7.3.7. Antioxidant and corrosion inhibition efficiency</td>
<td>277</td>
</tr>
<tr>
<td>7.4. Conclusion</td>
<td>279</td>
</tr>
<tr>
<td>Literature Cited</td>
<td>280</td>
</tr>
</tbody>
</table>

**CHAPTER-8: Summary and Conclusion**

Reprints of the Research Publications