NUCLEAR POLICY OF INDIA
(A STUDY OF SECURITY PERSPECTIVE)

A SUMMARY
SUBMITTED TO
MAHARSHI DAYANAND UNIVERSITY, ROHTAK
FOR THE AWARD OF THE DEGREE OF
DOCTOR OF PHILOSOPHY
IN
DEFENCE AND STRATEGIC STUDIES
2011

Submitted By
AARTI RANI
(Registration No. : 04-RUR-180)

Under the Supervision of
Dr. Rajender Singh Siwach
Professor
DEPTT. OF DEFENCE & STRATEGIC STUDIES

DEPARTMENT OF DEFENCE & STRATEGIC STUDIES
MAHARSHI DAYANAND UNIVERSITY
ROHTAK-124001
HARYANA
SUMMARY

The nuclear era began with the MANHATTAN PROJECT, the secret American effort during World War II to construct an atomic bomb. On 6 July 1945 the world's first atomic explosion was detonated during a test in the New Mexico desert. On 6 and 9 August, respectively, the Japanese cities of Hiroshima and Nagasaki were devastated by atomic bombings, and on 10 August Japan offered to surrender. The wave of celebrations in the United States that followed the end of the war were tinged with an immediate sense of shock at the terrifying power of this new class of weaponry.

The first Soviet atomic test (years before it was expected) in August 1949, President Harry S. Truman gave permission to proceed with the development of a whole new kind of nuclear weapon, the Hydrogen Bomb. In 1957 the Soviet Union tested the world's first intercontinental ballistic missile (ICBM), and the United States soon followed suit.

After World War II, the proliferation of nuclear weapons became an increasing cause of concern throughout the world. At the end of the 20th century the vast majority of such weapons were held by the United States and the USSR; smaller numbers were held by Great Britain, France, China, India, and Pakistan. Israel also has nuclear weapons but has not confirmed that fact publicly; North Korea has conducted a nuclear test explosion but probably does not have a readily deliverable nuclear weapon; and South Africa formerly had a small arsenal. Over a dozen other countries can, or soon could, make nuclear weapons. In addition to the danger of radioactive fallout, in the 1970s scientists began investigating the potential impact of nuclear war on the environment.

“As long as the world is constituted as it is, every country will have to devise and use the latest devices for its protection. I have no doubt India will develop her scientific researches and I hope Indian scientists will use the atomic force for constructive purposes. But if India is threatened, she will inevitably try to defend herself by all means at her disposal.

Dr. Rajagopala Chidambaram and Dr. A.P.J. Abdul Kalam were not playing soldier; they were sitting, disguised, in a small control room listening to a fateful countdown: five, four, three, two, one . . . They were leaders of the strategic weapons establishment, an enclave of scientists and engineers in India's defense research and
atomic energy institutions who for five decades had been pushing India to join the exclusive club of nuclear weapon states. Now, on May 11, 1998, they were on the verge of crossing the threshold unambiguously.

Almost exactly twenty-four years earlier, in May 1974, Chidambaram and a couple of dozen fellow scientists and engineers had encamped at this same desert site 150 kilometers from the Pakistani border, near the village of Pokhran. During the nights as they lay on cots in the hot air they looked to the skies and searched for the light of a passing American satellite, wondering whether they would be detected as they prepared to conduct India's first nuclear explosion. They went unnoticed, and on May 18, 1974, the team detonated what India's leader, Indira Gandhi, insisted was a "peaceful nuclear explosive." But the ambivalence of this peaceful nomenclature meant trouble for the strategic weaponeers. Indira Gandhi and successive prime ministers resisted the scientists' and engineers' desires to conduct additional tests and develop an overt nuclear weapon program. Moral doubt, political turmoil, and the censure of the United States and the international community put the brakes on their plans. For twenty-four years the scientists and engineers pushed against the Indian government's self-restraint.

Prime Minister Atal Behari Vajpayee, a soft-spoken seventy-one-year-old bachelor who had built his Hindu revivalist party into a formidable political presence, declared that India was now a nuclear weapon power. Its exact capabilities—quantitatively and qualitatively—remained uncertain to the Indian public and the outside world. However, India still lacked a national security and defense strategy to determine the role of nuclear weapons. Since 1974, India had pursued a "nuclear option" strategy. This entailed the capability to assemble nuclear weapons quickly—within hours or a few days—paired with the expressed intention not to do so until a grave threat to its security arose. The nuclear option reflected India's normative aversion to nuclear weapons, its emphasis on global nuclear disarmament, and political leaders' preferences to concentrate resources and energy on economic development.

The crucial importance of the desire for recognition of India as a world power in driving forward the nuclear weapons program, even overshadowing considerations of military necessity and deterrence is underscored by remarks by former weapons program leader Raj Ramanna.
"There was never a discussion among us over whether we shouldn't make the bomb. How to do it was more important. For us it was a matter of prestige that would justify our ancient past. The question of deterrence came much later. Also, as Indian scientists we were keen to show our Western counterparts, who thought little of us those days, that we too could do it."

India's indigenous efforts in nuclear science and technology were established remarkably early. The first step was taken by Dr. Homi Jehangir Bhabha in March 1944 when he submitted a proposal to the Sir Dorab Tata Trust (established in honor of Bhabha's own uncle, Sir Dorab Tata) to found a nuclear research institute, over three years before independence and a year before the first nuclear weapon test. This led to the creation of the Tata Institute of Fundamental Research (TIFR) on 19 December 1945 with Bhabha as its first Director. The new government of India passed the Atomic Energy Act, on 15 April 1948, leading to the establishment of the Indian Atomic Energy Commission (IAEC) not quite one year after independence.

As a nation India has always placed a premium on self-sufficiency. It is, in fact, the most self-sufficient large economy in the world and does not import any nuclear fuel. [The traditionally closed nature of economy though accounts for the import/export based Chinese economy far outstripping its growth from the late seventies to the early nineties.] Due to its vast domestic resources of thorium (a potential fuel for breeder reactors) but limited supplies of uranium, from the start of its nuclear program India has always placed strong emphasis on the development of breeder reactor fuel cycles. Breeder reactors require highly concentrated fissionable material for reactor fuel: either highly enriched uranium or plutonium. This provided a peaceful rationale for developing a plutonium separation capability, but the principal impetus for the India's first fuel reprocessing plant was to obtain a nuclear option.

It seems Bhabha could not have been unaware of how inappropriate such cost estimates were to the circumstances of India. The U.S. Plowshare cost figures were based on the incremental cost of producing devices by a vast industrial complex costing tens of billions of dollars, which had already manufactured nuclear weapons numbering in the tens of thousands. And even so, it is very questionable that the U.S. Plowshare estimates - made by Plowhare advocates - constituted anything like full cost accounting for the usage
of this vast infrastructure. And this also ignored the fact that the delivery systems for nuclear weapons typically cost several times as much as the weapons themselves. The real cost to India for any nuclear weapon program would be orders of magnitude greater than Bhabha's claims (China had spent over $4 billion in then-year dollars up to 1964 for its program).

The center piece of India's nuclear weapons program is the Bhabha Atomic Research Center (BARC) in Trombay near Mumbai (Bombay) which is the center for nuclear weapons associated work. BARC was founded as the Atomic Energy Establishment, Trombay (AEET) on 3 January 1954 by Dr. Homi Jehangir Bhabha. Bhabha was the also the founder India's entire nuclear industry and infrastructure, and India's first Secretary of the Department of Atomic Energy (DAE) when it was created on 3 August 1954. In its early years BARC was already a very large, but primarily civilian-oriented nuclear research laboratory. When India's first nuclear device was designed and fabricated at there, the work was conducted surreptitiously (often at night) to hide it from the rest of the laboratory. But in May 2000 a watershed was reached in this tension between civilian and military work when the civilian Atomic Energy Regulatory Board (AERB) which had been exercising regulatory oversight was split off from BARC. As S. Rajagopal observed, an expert on nuclear affairs and a professor of the Bangalore-based National Institute of Advanced Studies, this decision effectively reclassified BARC as a nuclear weapons laboratory - a laboratory with a primarily military function though also conducting civilian oriented work in a model similar to the U.S. weapons labs. But without much of the civilian oversight and management that the U.S. labs have.

The Government of India’s attitude to whether India should have a nuclear bomb or not, and its overall approach to nuclear weapon proliferation had been dominated by the views of India’s first Prime Minister Jawaharlal Nehru. As early as in 1946 he said at a public meeting in Bombay that the bomb was to him a ‘symbol of evil’. In 1957, during a visit to Japan and standing in front of the peace memorial, Nehru told the cheering Japanese people : “The world must choose between the path of violence symbolized by the atom bomb and the path of peace symbolized by the Buddha”.

India as a member of the 8-member Non-Aligned Group played an important role in the Eighteen Nationsd Disarmament Committee (ENDC) in the conclusion of the
treaty banning nuclear weapon tests in the atmosphere, in outer space and under water, commonly known as Partial Test Ban Treaty (PTBT) which came into force in October 1963. India has all along advocated a comprehensive Test Ban Treaty as the most important disarmament measure. India was one of those ‘third world’ state which in the 1950s and the 1960s had taken initiatives to prevent the spread of nuclear weapons was opposed to increasing testing and proliferation of these weapons and pleaded for curbing nuclear arms. India had played an active role in the process of the formulation of the nuclear non-proliferation treaty. But refused to sign the treaty because of its various flows. Actually India, along with Ireland and Sweden, was in the forefront of those non-nuclear countries which had strongly advocated the non-dissemination and non-acquisition of nuclear weapons. It has continued to follow the same line of argument and has advanced significant proposals from time to time to get the world free of nuclear weapons. The most important on is the Rajiv Gandhi Action Plan presented to the UN Special Session on Disarmament held in 1988 which gave a detailed programme to rid the world of nuclear weapons by the year 2010.

India has thus consistently maintained that the non-proliferation regime with NPT as its cornerstone is unequal, discriminatory, fails to provide security of safeguards and denies the peaceful uses of nuclear energy to the NNWS and a regime which perpetuates technical dependence. It has failed to prevent vertical proliferation, has not taken significant steps towards complete nuclear disarmament and general disarmament. Therefore, India cannot agree to abide by the rules, norms and directives of a regime which does not take care of its security concern and instead of providing security creates more insecurity.

The Indian government, however, continued to adhere to the declared policy. Prime Minister Lal Bahadur Shastri cautioned the country not to give way to ‘panic or alarm’. V.K. Krishna Menon, the then Defence Minister, in a most ridiculous way made a strong plea against India going nuclear, arguing that it was a danger to India for “if China takes it into her head to drop a bomb on us in order to create panic, then she can easily tell the world that we dropped it on them just as Pakistan does things to us and then says that we attacked them. It is this type of cynicism and lack of perspective and foresight on the part of these leaders that they have landed this country in the most helpless situation.
Prime Minister Lal Bahadur Shastri, replying to the Jan Sangh motion on 27 November 1964, asking the government to change its policy regarding the bomb said, “The cult of the bomb is a danger to would peace and we reject it categorically”. In his view the moral aspect could not be ignored as India had raised its voice at the six week old non aligned conference at Cairo, and pleased how India could change the policy.

The Government of India and the other supporters of the ‘nuclear option approach’ have not lacked in showering praise on the ‘nuclear option strategy’ as the most prudent policy to have access to the nuclear technology having nuclear weapon capability, keeping the option of acquiring the nuclear weapons with itself and not signing the NPT, and at the same time not to compromise with its commitment to nuclear disarmament.

The Government of India, however, stuck to its policy, that it is committed to the use of nuclear energy for peaceful purposes, thus, disappointing the high hopes of those who thought that India now would go nuclear. It decided to retain the status that it could make a bomb but would not do so and now is being “treated as a nuclear power with no nuclear teeth.”

In addition, India’s security scenario has also undergone changes with the break-up of the former Soviet Union and the emergence of independent states, three of them in possession of nuclear weapons. They have yet to sign the NPT. Some of the new states have strong Islamic roots. Almost all of them have declared themselves against any kind of fundamentalism and Pakistan so far has not been able to make any breakthrough into these central Asian states despite its initiatives and persistent efforts. India, however, cannot and should not be oblivious to Pakistan’s links with West Asia as an Islamic country and its pursuit of Islamic bomb. Now all the Central Asian republics have joined the organization of Islamic Countries (OIC), which on many occasions has taken anti-Indian stand purely on religious grounds. Pakistan has already activated its diplomacy to win over these republics, which till now was not possible as the relations outside the framework of the USSR were unthinkable. It is a new factor in India’s security, which would be quite decisive for its future security planning.
India also cannot ignore the developments in the middle East, particularly in the Gulf, where even after the defeat of Iraq, massive US army is deployed in the region. In addition to the earlier involvement of Saudi Arabia and Libya in Pakistan’s Islamic bomb, Pakistan now, because of its military support during the Gulf war, has made a position for itself, which is more favourable. The Saudi Arabians have been involved in Pakistan’s nuclear weapon programme by providing finances and now have reportedly transferred hundreds of USSR supplied Iraqi tanks captured by Saudi Arabia and the Allied forces during the war.

“As long as the world is constituted as it is, every country will have to devise and use the latest devices for its protection. I have no doubt India will develop her scientific researches and I hope Indian scientists will use the atomic force for constructive purposes. But if India is threatened, she will inevitably try to defend herself by all means at her disposal.”

India carried out its first nuclear test on May 18, 1974. Billed as a “peaceful nuclear explosion”, the test had 15 kiloton yield. Subsequently, Defense Minister Jagjivan Ram argued that the test had few or no military implications and was simply part of India’s ongoing attempts to harness the peaceful uses of nuclear energy. The two scientists closely associated with the nuclear test, R. Chidambaram and R. Ramana, maintained the same public postures. India’s explanation of the test found few adherents abroad, however. Of the great powers, only France congratulated the Indians or their success. The Chinese and Soviet reactions were muted, but critical. The United States and Canada cut off all nuclear cooperation with India. Canada accused India of having diverted nuclear materials from a Canadian supplied reactor to make the bomb. The U.S. reaction however, was the most severe in 1976 Congress introduced the symington amendment to the foreign aid bill, thereby cutting off certain forms of economic and military assistance to countries that received enrichment or reprocessing equipment, materials, or technology without full-scope international atomic energy agency safeguards.

The nuclear testing by India and Pakistan raises the stakes in what has become a dangerous three cornered regional armsrace. China is a declared nuclear power with a significant arsenal of weapons and various means to deliver them. Both India and Pakistan are thought to be capable of putting together nuclear, weapons in a reasonably
short space of time. Neither claims to have deployed nuclear weapons. But the latest test underline their growing nuclear capability.

Since 1998, both India and Pakistan appear to be integrating nuclear weapons into security strategy and planning. With the ominous logic of nuclear deterrence, each side’s desire to make its nuclear forces more credible may make those nuclear forces more usable. Ballistic missiles offer both sides advantages over using aircraft as delivery vehicles, but the short ranges create a hair-trigger situation. From launch to impact, missile flight times may be as short as 5 minutes. In the past, both sides appeared to use the separation of warhead components as a form of command and control (in the sense of lowering the risk of unauthorized or accidental use). Some observers have noted that this approach becomes risky when the other side can launch short-range ballistic missiles against which there is no defense. These observers have called for improving command and control of nuclear forces, while noting, ironically, that reduced ambiguity could conversely increase the likelihood of war.

Pakistan and China have enjoyed a generally close and mutually beneficial relationship over several decades. Pakistan served as a link between Beijing and Washington in 1971, as well as a bridge to the Muslim world for China during the 1980s. China’s continuing role as a major arms supplier for Pakistan began in the 1960s and included helping to build a number of arms factories in Pakistan, as well as supplying complete weapons systems. After the 1990 imposition of U.S. sanctions on Pakistan, the Islamabad-Beijing arms relationship was further strengthened. Pakistan continues to view China as an “all-weather friend” and perhaps its most important strategically.

In 2005, China’s Prime Minister visited Islamabad, where Pakistan and China signed 22 accords meant to boost bilateral cooperation. President Musharraf’s five-day visit to Beijing in early 2006 saw bilateral discussions on counterterrorism, trade and technical assistance. Chinese President Hu’s late 2006 travel to Islamabad was the first such visit by a Chinese president in ten years; another 18 new bilateral pacts were inked, including a bilateral Free Trade Agreement. In mid-2007, Prime Minister Aziz visited Beijing, where Pakistan and China signed 27 new agreements and memoranda of understanding to “re-energize” bilateral cooperation in numerous areas, including defense, space technology, and trade. No public mention was made regarding civil
nuclear cooperation. Preident Musharraf’s April 2008 travel to Beijing produced ten new memoranda of understanding and a reiteration of the two countries “special relations”.

The spread of ever more sophisticated weaponry—including chemical, biological, and nuclear weapons—and of the missiles capable of carrying them represents a growing danger to international security. This proliferation exacerbates and fuels regional tensions and complicates U.S. defense, planning. It poses even greater dangers to U.S. Forces and facilities abroad, and possibly even the United States itself. So for it make kind of treaties like NPT & CTBT etc.

The Treaty on the Non-Proliferation of Nuclear Weapons (known as the Non-Proliferation Treaty or NPT) is a cornerstone of global security. The NPT aims to prevent the spread of nuclear weapons to additional states while ensuring fair access to peaceful nuclear technology under international safeguards (audits and inspections). There are two categories of parties to the treaty—nuclear weapon states (NWS) and non-nuclear weapon states (NNWS). Under the treaty, NWS are defined as the five states that exploded a nuclear device before January 1, 1967 (United States, Soviet Union [now Russia], United Kingdom, France, and China).

The NPT embodies the international community’s efforts to prevent the further spread of nuclear weapons and its aspirations for global disarmament. It also facilitates cooperation in the peaceful uses of nuclear energy under International Atomic Energy Agency (IAEA) safeguards. For these reasons, the NPT is generally recognized as the foundation of the international nuclear nonproliferation regime.

The NPT regime provides incentives and reassurances to states willing to renounce nuclear weapons. In exchange for the commitment to forego developing nuclear weapons, non-nuclear weapon states gain access to nuclear materials and technology for peaceful uses of nuclear energy under International Atomic Energy Agency (IAEA) safeguards. The NPT commits the non-nuclear weapon states not to build, acquire, or possess nuclear weapons and to accept safeguards on all of their nuclear activities and materials to confirm that these are not being used for nuclear weapons.

The NPT is the result of a long line of negotiations among various states concerned with the use of nuclear technology for both peaceful and destructive purposes. With the nuclear bombing of Hiroshima and Nagasaki in mind and risks of the spread of
nuclear weapon technology growing, the international community sought ways to prevent any future use or acquisition of such destructive weapons.

The Comprehensive Test Ban Treaty (CTBT)—described as the “longest sought and hardest fought for arms control treaty in history”—was opened for signature in September 1996. The CTBT obligates countries that sign and ratify “not to carry out any nuclear weapon test explosion or any other nuclear explosion.” It provides for an extensive verification regime including an International Monitoring System (IMS) to detect nuclear explosions, a global infrastructure for satellite communications from IMS stations to an International Data Center (IDC) that processes and distributes data to State Parties, and for on-site inspections, which may be requested by any State Party to determine whether suspected cheating has occurred. To implement these verification arrangements, the treaty establishes a Comprehensive Test Ban Organization (CTBTO) located in Vienna.

India has pursued a consistent and principled policy on Nuclear disarmament and the CTBT. It is the Policy of & non-aligned country that achieved its independence through non-violence. It is a policy rooted in the conviction that nuclear weapons are weapons of Mass destruction and the elimination of nuclear weapons will enhance the security of all people and all nations.

The CTBT had always been visualized as the first definitive and irreversible step along the road to nuclear disarmament. It should have done so in two ways. First, the CTBT should prohibit the designing and development of newer generations of nuclear weapons. Secondly, such CTBT should also signal a shift in the perception of the nuclear weapon states who have sought to ensure their security through their nuclear arsenals for the last fifty years.

It is also understood that USA must be seen to act decisively so that the would be proliferators would perceive that the steps taken by the weapon powers are seen to be hurting the countries which have "gate crashed" into the nuclear club. It is in this context that India should examine its position and make an assessment whether it would really be possible to get access to dual technologies which have been withheld from it even before Pokharan tests.
Basically India has two options. 1. To accept all the demands put forth by US soon after Pokharan tests and get the sanctions lifted. One aspect to be factored in is whether the sanctions are going to destroy India or whether India can live with it without making much noise about the sanction itself. 2. Follow the Chinese way- of proliferation by increments and keep up the strategy of "public denial and private admission", and thus have a leverage over USA. The latter is no option at all as India has but for a one time clandestine purchase of heavy water, has had a very clean record in the matter of proliferation although it is not a signatory to the NPT.

But there is a third option which India could and should actively pursue. If India declares itself to be a nuclear weapon power, it should behave like one. The Pokharan II tests have given sufficient data for the computer codes and no further testing is necessary for weaponization. The CTBT by itself is non discriminatory. Why not accept the CTBT on its own merits and not look for quid pro quo from nuclear weapon powers? Thus India will be able to regain the moral heights necessary to work genuinely for nuclear disarmament. In the discussions that will inevitably ensue on the Fissile Missile Cut Off Treaty (FMCT), if care is taken to ensure that India keeps the fissile material produced in the past, that itself will be an indirect recognition of India as a nuclear weapon State.

The Indo-U.S. civilian nuclear agreement is the name commonly attributed to a bilateral agreement on nuclear cooperation between the United States of America and the Republic of India. The framework for this agreement was a Joint Statement by Indian Prime Minister Manmohan Singh and U.S. President George W. Bush, under which India agreed to separate its civil and military nuclear facilities and place civil facilities under International Atomic Energy Agency (IAEA) safeguards and, in exchange, the United States agreed to work toward full civil nuclear cooperation with India.

The 123 agreement defines the terms and conditions for bilateral civilian nuclear cooperation, and requires separate approvals by the U.S. Congress and by Indian cabinet ministers. According to the Nuclear Power Corporation of India, the agreement will help India meet its goal of adding 25,000 MW of nuclear power capacity through imports of nuclear reactors and fuel by 2020.
Consequently, India's nuclear isolation constrained expansion of its civil nuclear program, but left India relatively immune to foreign reactions to a prospective nuclear test. Partly for this reason, but mainly due to continued unchecked covert nuclear and missile proliferation activities between Pakistan, China and North Korea, India conducted five more nuclear tests in May, 1998 at Pokhran.

The growing energy demands of the Indian and Chinese economies have raised questions on the impact of global availability to conventional energy. The Bush Administration has concluded that an Indian shift toward nuclear energy is in the best interest for America to secure its energy needs of coal, crude oil, and natural gas.

The former Under Secretary of State of Political Affairs, Nicholas Burns, one of the architects of the Indo-U.S. nuclear deal said “India’s trust, its credibility, the fact that it has promised to create a state-of-the-art facility, monitored by the IAEA, to begin a new export control regime in place, because it has not proliferated the nuclear technology, we can’t say that about Pakistan.” when asked whether the U.S. would offer a nuclear deal with Pakistan on the lines of the Indo-U.S. deal. Mohammed ElBaradei, head of the International Atomic Energy Agency, which would be in charge of inspecting India's civilian reactors has praised the deal as "it would also bring India closer as an important partner in the nonproliferation regime". However, members of the IAEA safeguards staff have made it clear that Indian demands that New Delhi be allowed to determine when Indian reactors might be inspected could undermine the IAEA safeguards system. The reason for this is to restrict development of nuclear weapons and to negotiate with India indirectly to ratify the NPT using another mechanism.

India’s no-first-use nuclear (NFU) posture, however, only heightens its need to develop and deploy second-strike capabilities. With a no-first-use (NFU) posture, a nation necessarily has to have the ability to survive a first strike and retaliate. Unless a nation wishes to practice deterrence solely through a first-strike posture, as Pakistan is doing, it has to invest in second-strike assets. India’s decision to add a sea-based component to its nuclear deterrent is to be understood in this context, since the least-vulnerable nuclear weapons are those on board submarines. This is why a first-use nuclear doctrine is the simplest, most cost-effective posture, especially for a state not at the top end of the technology ladder. While NFU has historically been employed by
China and the Soviet Union to cover windows of nuclear vulnerability, its credibility is tied to expensive second-strike assets. Unlike India, Israel has not declared NFU despite its nuclear monopoly in the Middle East. With China qualifying its NFU as it advances in nuclear-deterrent capabilities, India is the only nuclear state with a totally unconditional NFU applicable in all circumstances.