LIST OF FIGURES

Fig. 1.1 Schematic diagram of the Atmospheric boundary layer (From Arya, 1982) 3

Fig. 1.2 Diurnal evolution of the ABL with time (Based on Stull 1988). The X-axis is plotted with the time in hours and Y-axis represents the height in metre 4

Fig. 1.3 Schematic diagram of the various stability categories based on virtual temperature (After Arya, 1988) .. 12

Fig. 2.1 Location map of Cochin (Tower location is marked by T) 28

Fig. 2.2 Micrometeorological Tower of 20 m height with three levels of sensors installed at Cochin University Campus for atmospheric boundary layer studies 28

Fig. 2.3 Diurnal variation of air temperature during four different seasons 32

Fig. 2.4 Diurnal variation of soil temperature in different seasons at four depths 33

Fig. 2.5 Diurnal variation of wind speed during four different seasons at three levels 34

Fig. 2.6 Diurnal variation of wind direction in different seasons at three levels 35

Fig. 2.7 Diurnal variation of averaged wind direction in different seasons considering all non rainy days .. 36

Fig. 2.8 Diurnal variation of air temperature, wind direction and wind speed for 12th January, representative of winter, 15th April for pre-monsoon, 23rd July for southwest monsoon and 27th November for post monsoon. Dotted solid line indicates 20 m level and solid line 10 m level .. 38

Fig. 2.9 Diurnal variation of sea breeze component for representative days of the seasons ... 39

Fig. 2.10 Diurnal variation of air temperature, wind direction and wind speed during a rainy day (24th June) .. 40

Fig. 2.11 Diurnal variation of averaged momentum flux during the four seasons 41

Fig. 2.12 Diurnal variation of averaged sensible heat flux during the four seasons 42
Fig. 2.13. Diurnal variation of momentum flux during individual day of the seasons.

Fig. 2.14. Diurnal variation of sensible heat flux during individual day of the seasons.

Fig. 2.15. Variation of drag coefficient with wind during sea breeze period.

Fig. 2.16. Variation of drag coefficient with wind during land breeze period.

Fig. 2.17. Day to day variation of (a) surface wind, (b) temperature, (c) frictional velocity and (d) temperature scale during land breeze period.

Fig. 2.18. Day to day variation of (a) Momentum Flux, (b) Sensible Heat Flux, (c) Stability Parameter and (d) Drag coefficient during land breeze period.

Fig. 2.19. Day to day variation of (a) surface wind, (b) temperature, (c) frictional velocity and (d) temperature scale during sea breeze period.

Fig. 2.20. Day to day variation of (a) Momentum Flux, (b) Sensible Heat Flux, (c) Stability Parameter and (d) Drag Coefficient during sea breeze period.

Fig. 2.21a. Dependence of boundary layer parameters with wind.

Fig. 2.21b. Dependence of boundary layer parameters with temperature.

Fig. 3.1. Spatial structure of a) NOAA OLR composite representing organized convective clouds and b) wind at 850 hPa composite during Active monsoon condition.

Fig. 3.2. Spatial structure of a) NOAA OLR composite representing organized convective clouds and b) wind at 850 hPa composite during weak monsoon situation.

Fig. 3.3. Spatial structure of wind at 850 hPa with magnitude and direction during active and weak phases of monsoon at different levels a) 1000 hPa, b) 925 hPa, c) 850 hPa, d) 700 hPa and e) 500 hPa.

Fig. 3.4. Variations of surface fluxes of momentum and sensible heat during active and weak phases of monsoon.

Fig. 3.5. Conserved variable analysis for Trivandrum during the active period of southwest monsoon.
Fig. 3.6 Conserved variable analysis for Mangalore during the active period of southwest monsoon ... 64

Fig. 3.7 Conserved variable analysis for Trivandrum during the weak period of southwest monsoon ... 65

Fig. 3.8 Conserved variable analysis for Mangalore during the weak period of southwest monsoon ... 66

Fig. 3.9. Variation of the specific humidity during June and July of a) 2001 and b) 2002 in different standard levels ... 68

Fig. 3.10. Variation of the virtual potential temperature during June and July of a) 2001 and b) 2002 in different standard levels 70

Fig. 3.11. Variation of the virtual equivalent potential temperature during June and July of a) 2001 and b) 2002 in different standard levels .. 71

Fig. 3.12. Cross relation of specific humidity with virtual potential temperature for the standard levels during the monsoon period .. 72

Fig. 3.13. Cross relation of specific humidity with equivalent potential temperature for the standard levels during the monsoon season .. 73

Fig. 3.14 Wavelet analysis of the wind at 850 hPa, 925 hPa and surface during southwest monsoon. The first row represents the original signal, the second row gives the harmonics of wind in the QBM band and the next is same for ISO band 75

Fig. 3.15 Wavelet analysis of the temperature at 850 hPa, 925 hPa and surface during southwest monsoon. The first row represents the original signal, the second row gives the harmonics of wind in the QBM band and the next is same for ISO band 76

Fig. 4.1 Averaged surface wind in ms\(^{-1}\) for the years from 1999 to 2003 during January, April, July and November representing different seasons ... 86

Fig. 4.2 Averaged frictional velocity in ms\(^{-1}\) for the years from 1999 to 2003 during January, April, July and November representing different seasons ... 87
Fig. 4.3 Averaged roughness parameter in mm for the years from 1999 to 2003 during January, April, July and November representing different seasons.

Fig. 4.4 Averaged wind stress curl (Nm⁻¹) parameter for the years from 1999 to 2003 during January, April, July and November representing different seasons.

Fig. 4.5 Relation of wind stress with wind speed for different seasons for Arabian Sea.

Fig. 4.6 Relation of wind stress with wind speed for different seasons for Bay of Bengal.

Fig. 4.7 Relation of roughness parameter to wind speed during different seasons over Arabian Sea.

Fig. 4.8 Relation of roughness parameter to wind speed during different season over Bay of Bengal.

Fig. 4.9 Relation of frictional velocity with wind speed during different seasons over Arabian Sea.

Fig. 4.10 Relation of frictional velocity with wind speed during different seasons over Bay of Bengal.

Fig. 4.11 Depending relations of sea surface parameters over Arabian Sea and Bay of Bengal.

Fig. 4.12 Relation of drag coefficient with wind for different season over Arabian Sea.

Fig. 4.13 Relation of drag coefficient with wind for different season over Bay of Bengal.

Fig. 4.14 Day to day variation of frictional for Arabian Sea (solid line) and for Bay of Bengal (dotted line) averaged of four years from 2000 to 2003.

Fig. 4.15 Day to day variation of drag coefficient for Arabian Sea (solid line) and for Bay of Bengal (dotted line) averaged of four years from 2000 to 2003.

Fig. 4.16 Wavelet analysis of frictional velocity over Arabian Sea and Bay of Bengal.

Fig. 4.17 Wavelet analysis of Drag Coefficient over Arabian Sea and Bay of Bengal.
Fig. 5.1 The location of the LAWP (Gadanki) with map of India.................................108

Fig. 5.2 Antenna and transmitter assembly unit of the LAWP.................................108

Fig. 5.3 Three dimension picture of Nallmala Hills over which Gadanki is located........112

Fig. 5.4 Schematic diagram for data processing in LAWP...114

Fig. 5.5 Comparison of wind speed measured by LAWP, MST radar and radiosonde on 26 July 1999 (1030 IST) and 28 July 1999 (1615 IST)...117

Fig. 5.6 Diurnal variation of zonal wind component (ms\(^{-1}\)) from LAWP for the representative days (a) 6\(^{th}\) May, (b) 23\(^{rd}\) June, (c) 25\(^{th}\) July, (d) 8\(^{th}\) August and (e) 14\(^{th}\) September of 1999...120

Fig. 5.7 Diurnal variation of vector wind from LAWP for the representative days (a) 6\(^{th}\) May, (b) 23\(^{rd}\) June, (c) 25\(^{th}\) July, (d) 8\(^{th}\) August and (e) 14\(^{th}\) September of 1999...121

Fig. 5.8 Diurnal variation of vertical wind shear (s\(^{-1}\)) for the representative days (a) 6\(^{th}\) May, (b) 23\(^{rd}\) June, (c) 25\(^{th}\) July, (d) 8\(^{th}\) August and (e) 14\(^{th}\) September of 1999...124

Fig. 5.9 Diurnal variation of signal to noise ratio (reflectivity) the representative days (a) 6\(^{th}\) May, (b) 23\(^{rd}\) June, (c) 25\(^{th}\) July, (d) 8\(^{th}\) August and (e) 14\(^{th}\) September of 1999...125

Fig. 5.10 Diurnal variation of vertical wind (ms\(^{-1}\)) from LAWP for the representative days (a) 6\(^{th}\) May, (b) 23\(^{rd}\) June, (c) 25\(^{th}\) July, (d) 8\(^{th}\) August and (e) 14\(^{th}\) September of 1999...127

Fig. 5.11 Time series of the area averaged (10° N - 20° N & 70° E - 80° E) zonal wind at 850 hPa during 1999...128

Fig. 5.12 Height time intensity plot of the zonal wind (ms\(^{-1}\)) during active and weak phase of southwest monsoon 1999 taken from LAWP...129

Fig. 5.13 Height - time plot of the zonal wind (ms\(^{-1}\)) during active and weak phase of southwest monsoon from NCEP/NCAR reanalysis data set...130
LIST OF PUBLICATIONS

Hamza V and C A Babu ‘Boundary layer characteristics associated with sea breeze circulation over a tropical station’, *Mausam* (communicated)

Hamza V, Babu C A and T P Sabin, ‘Marine Atmospheric Boundary Layer Characteristics over Arabian Sea and Bay of Bengal’, *Advances in Atmospheric Sciences* (submitted)

Hamza V.and C.A.Babu ‘Moisture transport during active and weak phases of monsoon’ METOC-2004 held (5 – 6 February 2004) at Cochin, India.

Hamza V, C A Babu and T P Sabin, ‘Surface turbulence features associated with the sea breeze circulation over Kochi’ KEC-2005 held (6-7 May 2005) at Cochin, India.

Hamza V, Babu C A and T P Sabin, ‘Characteristic Study of The Boundary Layer Parameters over Arabian Sea and Bay of Bengal using Quikscat data set’ IAMAS-2005 held (2-11 August 2005) at Beijing, China.

Babu C A and Hamza V, ‘Monsoon Boundary Layer characteristics using LAWP’ VIII User Scientists Workshop to be held (20-21 June 2006) Gadanki, India.