REFERENCES

- Menku A, Ogden M & Saraymen R 2010, ‘The Protective Effects of Propofol and Citicoline Combination in Experimental Head Injury in Rats’, *Turkish Neurosurgery*, vol.20, no.1, pp.57-62
- Akwa, Y, Ladurelle, N, Covey, DF & Baulieu, EE 2001, ‘The synthetic enantiomer of pregnenolone sulfate is very active on memory in rats and mice, even more so than its physiological neurosteroid counterpart: Distinct mechanisms?’, *Proceedings of the National Academy of Sciences of the United States of America*, vol.98, no.24, pp.14033-14037
- Alvarez, XA, Sampedro, C, Lozano, R & Cacabelos, R 1999, ‘Citicoline protects hippocampal neurons against apoptosis induced by brain beta-amyloid deposits plus cerebral hypoperfusion in rats’, *Methods and Findings in Experimental and Clinical Pharmacology*, vol.21, no.8, 535–540
• Baruch-Suchodolsky, R & Fischer, B 2009, ‘Abeta40, either soluble or aggregated, is a remarkably potent antioxidant in cell-free oxidative systems’, Biochemistry, vol.48, no.20, pp.4354–4370

• Brad, RSB, David, CR & Christopher, GS 2009, ‘Apoptotic mechanisms after Cerebral Ischemia’, *Stroke*, vol.40, no.5, pp. e331-e339


• Carden, DL & Granger, DN 2000, ‘Pathophysiology of ischemia and reperfusion injury’, *Journal of Pathology*, vol.190, no.3, pp. 255–266

• Chan, PH 2001, ‘Reactive Oxygen Radicals in Signaling and Damage in the Ischemic Brain’, *Journal of Cerebral Blood Flow & Metabolism*, vol.21, no.1, pp.2–14


• Chen, TH, Liao, FT & Wang, JJ 2014, ‘Inhibition of Inducible Nitric Oxide Synthesis Ameliorates Liver Ischemia and Reperfusion Injury Induced Transient Increase in Arterial Stiffness’, *Transplantation Proceedings*, vol.46, no.4, pp.1112-1116


• following cerebral ischemia in mice’, *European Journal of Pharmacology*, vol.457, no.2-3, pp.137 –146
• Dong, YZ, Shu, HL, Hong, SS & You, ML 2003, ‘Expression of Inducible Nitric Oxide Synthase after Focal Cerebral Ischemia stimulates Neurogenesis in the Adult Rodent Dentate Gyrus’, *The Journal of Neuroscience*, vol.23, no.1, pp.223-229
• Esor, B, Sevin, B, Tomris, O, Mustafa, S, Saadet, G & Nurettin, O 1997, ‘The Effects of Nitric Oxide Synthase Inhibitor, L-Name on NO Production During Focal Cerebral Ischemia in Rats: Could L-Name be the Future Treatment of Sudden Deafness?’, *International Journal of Neuroscience*, vol.89, no.1, pp.61-77
• Fernandez, AM, Gonzalez de la, VAG, Planas, B, & Torres-Aleman, I 1999, ‘Neuroprotective actions of peripherally administered insulin-like growth factor I in the injured olivo-cerebellar pathway’, *European Journal of Neuroscience*, vol.11, no. 6, pp. 2019–2030
• Fung, M, Furem, H, Sunm, W, Sunm, C, Shi, NY, Dou, Y, Su, J, Swanson, X & Mollnes, TE 2003, ‘Preneutralization of C5a-mediated effects by the monoclonal antibody 137-26 reacting with the C5a moiety of native C5a without preventing C5 cleavage’, *Clinical and Experimental Immunology*, vol.133, no.2, pp.160–169

• Gary, AR & Yi, Y 2007, ‘Vasogenic edema due to tight junction disruption by matrix metalloproteinases in cerebral ischemia’, *Neurosurgical Focus*, vol.22, no.5, pp.1-9


• Heather, MW & Russell, HS 2015, ‘TNFα in Cerebral Ischemia: Another Stroke against You’, *Journal of Neurochemistry*, vol.132, no.4, pp. 369-372


Horstick, G 2002, ‘C1-esterase inhibitor in ischemia and reperfusion’, *Immunobiology*, vol.205, no.4-5, pp.552–562


Isin, UC, Munire, K, Alp, C, Yasemin, GO & Turgay, D 2004, ‘Apoptotic and Necrotic Death Mechahnisms are Concomitantly Activated in the same Cell after
Cerebral Ischemia’, *Stroke*, vol.35, no.9, pp.2189-2194


- Jacek, L 2013, ‘Is MS an inflammatory or primary degenerative disease?’, *Journal of Neural Transmission*, vol.120, no.10, pp.1459-1462


- Jeyaraj, DP & Paulin, S 2013, ‘Stroke Epidemiology and Stroke Care Services in India’, *Journal of Stroke*, vol.15, no.3, pp.128-134


• Juan, PB & Angeles, A 1999, ‘Roles of Nitric Oxide in brain hypoxia-ischemia’, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1411, no.2-3, pp.415 - 436


• Kanaiyalal, DP, Chitti, BD, Abhijeet, RJ, Shyam, SS & Nilanjan, R 2010, ‘Role of Nitric Oxide Synthases in Cerebral Ischemia’, Current Research and Information on Pharmaceutical Sciences, vol.11, no.3, pp.50-56


• Kazunori, N, Celine, MC, Veronique, S, Jacquez, S & Elisabeth, P 1998, ‘The selective inhibitor of Neuronal Nitric Oxide Synthase, 7-Nitroindazole, Reduces the delayed neuronal damage due to forebrain Ischemia in Rats, *Stroke*, vol.29, no.6, pp.1248-1254


• Kensaku, S, Kazumi, K, Yasuvuki, I, Yoko, O & Takeshi, I 2009, ‘Plasma Brain Natriuretic Peptide Can be a Biological Marker to distinguish Cardioembolic Stroke from other Stroke Types in Acute Ischemic Stroke’, *Internal Medicine*, vol.48, no.5, pp.259-264

• Kim, CK & Rivier, CL 2004, ‘Nitric oxide and carbon monoxide have a stimulatory role in the hypothalamic–pituitary–adrenal response to physic emotional stressors in rats’, *Endocrinology*, vol.141, no.6, pp.2244-2253


Marisol, GR, Argelia, ERM & Daniel, OS 2013, ‘Nitric Oxide Donors as Neuroprotective Agents after an Ischemic Stroke-Related Inflammatory Reaction’, *Oxidative Medicine and Cellular Longevity*, vol.2013, no.5, pp.1-16

Martynov, MY, Boiko, AN, Kamchatnov, AA, Kabanov, AN, Yasamanova, IA, Shchukin, TI, et al. 2013, ‘Neuroprotective Therapy with Citicoline (Ceraxon) in Patients with Ischemic Stroke’, *Neuroscience and Behavioral Physiology*, vol.43, no.6, pp.706 - 711


McManus, MJ, Murphy, MP & Franklin, JL 2014, ‘Mitochondria-derived reactive oxygen species mediate caspase-dependent and -independent neuronal deaths’, *Molecular and Cellular Neuroscience*, vol.63, pp.13-23

• Meyer, ZU, Link, C, Jorns, A, Nagel, E & Kohl, J 2001, ‘Preconditioning with the prostacyclin 1 analog epoprostenol and cobra venom factor prevents reperfusion injury and hyperacute rejection in discordant liver xenotransplantation’, *Xenotransplantation*, vol.8, no.1, pp.41–47


• Mohammadi, MS, Moosavi, SM & Dehghani, GA 2011, ‘Contribution of Nitric Oxide Synthase (NOS) in blood-brain barrier in disruption during acute focal cerebral ischemia in Normal rat’, *Pathophysiology*, vol.19, no.1, pp.13-20


• Moron, MS, Depierre, JW & Mannervik, B 1979, ‘Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver’, *Biochimica Biophysica Acta*, vol.582, no.1, pp.67-78

• Nagafuji, T, Matsui, T, Koide, T & Asano, T 1993, ‘Blockade of nitric oxide formation by N-nitro-l-arginine mitigates ischemic brain edema and subsequent cerebral infarction in rats’, *Neuroscience Letters*, vol.147, no.2, pp.159-162

• Nelson, A, Lebessi A, Peter, S & Helen, H 1997, ‘Comparison of effects of global cerebral ischaemia on spatial working learning in the standard and radial water maze:

131
• relationship of hippocampal damage to performance’, Behavioural Brain Research, vol.85, no.1, pp.93–115
• Pathan, AM 2012, ‘Therapeutic Applications of Citicoline and Piracetam as Fixed Dose Combination’, Biomedical and Pharmaceutical sciences, vol.2, no.12, pp.11-25
• Qian, K, Gu, Y, Zhao, Y, Li, Z & Sun, M 2014, ‘Citicoline protects brain against closed head injury in rats through suppressing oxidative stress and calpain over- activation’ Neurochemical Research, vol.39, no.7, pp.1206-1218
• Rao, MA & Hatcher, JF 2007, ‘Secretory phospholipase A2 IIA is up-regulated by TNF-α and IL-1α/β after transient focal cerebral ischemia in rat’, Brain Research, vol.1134, no.1, pp.199-205
• Samson, ML, Kajitani, K & George, SB 2010, ‘Nitric-oxide synthase mediates the ability of darbepoetin alfa to attenuate pre-existing spatial working memory deficits in rats subjected to transient global ischemia’, The Journal of Pharmacology and Experimental Therapeutics, vol.333, no.2, pp.437-444
• Sarah, YL, Jayda, LE & Dana, MS 2014, ‘Endothelium-derived nitric oxide production is increased by ATP released from red blood cells incubated with hydroxyurea’, Nitric Oxide, vol.38, no.30, pp.1-7
• Sathiya, S, Ranju, V, Kalaivani, P, Priya, RJ, Sumathy, H, Sunil, AG, et al. 2013, ‘Telmisartan attenuates MPTP induced dopaminergic degeneration and motor dysfunction through regulation of α-synuclein and neurotrophic factors (BDNF and GDNF) expression in C57BL/6J mice’, Neuropharmacology, vol.73, no.5, pp. 98-110
• Secades, JJ 2011, ‘Citricoline: pharmacological and clinical review, 2010 update’,
Reviews in Neurology, vol.52, no.2, pp.S1–S62


• Stefan, B & Christoph, K 2009, ‘Rodent models of focal cerebral ischemia: procedural pitfalls and translational problems’ *Experimental and Translational Stroke Medicine*, vol.1, no.8, pp.1-11


• Wong, AM, Hodges, H & Karen, H 2005, ‘Neural stem cell grafts reduce the extent of neuronal damage in a mouse model of global Ischemia’, Brain Research, vol.1063,
no.2, pp.140–50


• Zheng, J, Chun, L, Denise, MA, Shu, Y, Alexandra, EB & Hong, S 2014, ‘Role of Nitric Oxide Synthases in Early Blood-Brain barrier Disruption following Transient Focal Cerebral Ischemia’, Plos One, vol.9, no.3, e- 93134