7.0. References
7.0. REFERENCES


References


Challa V: Atherosclerosis of the Cervicocranial Arteries, Philadelphia, Lippincott Williams and Wilkins; 1999:


Creesel Burt DR, Snyder SH. Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 1979; 192: 281-83.

Cryan F and Lucki I. Antidepressant like behavioral effect mediated by 5-

Cryan F, Markou A and Lucki I. Noradrenergic lesions differentially alter the
antidepressant-like effect of reboxetine in a modified forced swimming test. Eur J

Cumming P, Shaw C, Vincent SR. High affinity histamine binding site is the \(H_3\) receptor:

Cuzzocrea S, Riley DP, Caputi AP, Salvemini D. Antioxidant therapy: a new
pharmacological approach in shock, inflammation, and ischemia/ reperfusion injury.

Dale HH, and Laidlaw PP. The physiological action of \(\beta\)-aminoethylimidazole. J Physiol
1910; 41:318-44.

Danysz W, Archer T, Fowler CJ. Screening of antidepressant drugs. In Behavioral models
in Psychopharmacology: theoretical, industrial and clinical perspectives, Willner P(ed),

Dawson DA, Kusomoto K, Graham DI, McCulloch J, Macrae IM. Inhibition of nitric
oxide synthesis does not reduce infarct volume in rat model of focal cerebral ischemia.

Dawson VL and Dawson TM. Nitric oxide neurotoxicity. J Chem Neuroanat 1996; 10(3-

De Garavilla L, Babbs C, Tacker W. An experimental circulatory arrest model in the rats to

de Rijk MC, Breteler MM, den Breeijen JH, Launer LJ, Grobbee DE, van der Meché FG,
and Hofman A. Dietary antioxidants and Parkinson disease: The Rotterdam study. Arch
Neurol 1997; 54(6) 762-65.

61(supple 6): 7-11.

Detke MJ, Johnson J and Lucki I. Acute and chronic antidepressant drug treatment in the
12.


References


Grahame-Smith DO. Inhibitory effect of chlorpromazine on the syndrome of hyperactivity produced by L-tryptophan or 5-methoxy-N, N-dimethyltryptamine in rats treated with monoamine oxidase inhibitor. Br J Pharmacol 1971 a; 43:856-64.


Herken H, Uz E, Ozyurt H, Sogüt S, Virit O, Akyol O. Evidence that the activities of erythrocyte free radical scavenging enzymes and the products of lipid peroxidation are increased in different forms of schizophrenia. Mol Psychiatry 2001; 6:66–73.


Lin HD. et al. Evaluation of histamine H₁, H₂, and H₃ receptor ligands at the human histamine H₄ receptor: identification of 4-methylhistamine as the first potent and selective H₄ receptor agonist. J Pharmacol Exp Ther (In press)


Lucki I. The forced swimming test as a model for core and component behavioral effect of antidepressant drugs. Behav Pharmacol 1997; 8: 523- 32.


Mahadik SP, Evans D, Lal H. Oxidative stress and role of antioxidant and ω-3 essential fatty acid supplementation in schizophrenia. Progress Neuropsychopharmacol Biol Psychiat 2001; 25(3): 463-93


Mar A. Antidepressants preferentially enhance habituation to novelty in the olfactory bulbectomized rat. Psychopharmacology (Berl) 2000; 150:52-60.


Meltzer HY. Clinical studied on the mechanism of action of clozapine: the dopamine-serotonin hypothesis of schizophrenia. Psychopharmacology 1991; Supple: S18-S27.


Miyazaki S, Onodera K, Imaizumi M, Timmerman H. Effects of clobenpropit (VUF-9153), a histamine H3 receptor antagonist, on learning and memory and on cholinergic and monoaminergic systems in mice. Life Science 1997; 61 ;355-61.


Mochizuki T, Yamatodani a, Okakura K, Takemura m, Ingaki N. *In vivo* release of neuronal histamine in the hypothalamus of rats measured by microdialysis. Naunyn-Schmiedeberg's Arch Pharmacol 1991; 343:190-95.


References


Snyder SH, Bannerjee SP, Yamamura HI. Drugs, neurotransmitters and schizophrenia. Science 1974; 184: 1243-53.


References


