<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Schematic illustration of two situations where blending and/or compounding are especially attractive from a commercial viewpoint</td>
</tr>
<tr>
<td>1.2</td>
<td>Gibbs free energy of mixing of binary blends</td>
</tr>
<tr>
<td>1.3</td>
<td>Steric hinderence by compatibilizers. Compatibilizers acting as both anchors and repulsive springs ensuring the stability and prevention to coalescence.</td>
</tr>
<tr>
<td>1.4</td>
<td>a) Block or graft copolymers b) Nonreactive polymers containing polar groups c) Reactive functional polymers d) A polymeric coupling agent attaches an inorganic filler to the polymer matrix and thus compatibilizes the filler with the polymer by non-bonded (physical) interactions and/or chemical bonds. It must be compatible with the polymer (ideally, it should have the same chemistry as the polymer), as well as being able to interact with, react with, or even better "glue" to the filler Error! Bookmark not defined.</td>
</tr>
<tr>
<td>1.5</td>
<td>Different filler particle sizes at the same filling level</td>
</tr>
<tr>
<td>1.6</td>
<td>The different types of nanofillers based on the nanodimension</td>
</tr>
<tr>
<td>1.7</td>
<td>Structure of montmorillonite clay</td>
</tr>
<tr>
<td>1.8</td>
<td>The delamination of layers through shear force a)-d) effective exfoliation of clay aggregates leads to more effective infiltration of the polymer delamination and e) the peeled clay layers once the polymer is diffused into the clay layers .f) the approximate number of platelets on complete delamination.</td>
</tr>
<tr>
<td>1.9</td>
<td>In-situ polymerized Nylon -6 clay nanocomposites</td>
</tr>
<tr>
<td>1.10</td>
<td>Representation of the process of solution casting</td>
</tr>
<tr>
<td>1.11</td>
<td>Different morphology of polymer clay nanocomposites through melt blending</td>
</tr>
</tbody>
</table>
Figure 1.12 The possible morphologies of polymer clay nanocomposites and the corresponding XRD peaks

Figure 1.13 Illustration of Bragg’s law

Figure 1.14 Schematic of X-ray diffraction for various types of nanocomposites

Figure 1.15 TEM images of CNT/acrylonitrile–butadiene–styrene nanocomposites fabricated by melt mixing: the selective and good level of dispersion of CNT in the styrene-acrylonitrile (SAN) section of the ABS polymer is observed (b) TEM micrograph taken from compatibilized PA6/PP/organoclay nanocomposite containing 5 phr of EPRgMA (PA6/PP/5E/4TC).

Figure 1.16 FIB-AFM images of the PS/PLLA/PS-b-PLLA sheath structure at the EPDM/PCL interface in the EPDM/PCL/PS/PLLA/PS-b-PLLA blend after (a) 15 min and (b) 60 min of quiescent annealing.

Figure 1.17 STXM composition maps of a) PP/20A/SEBS/PP-g-MA-5, b) PP/20A/SEBS/PP-g-MA-15, c) PP/20A/SEBS/PP*-5, and d) PP/20A/SEBS/PP*-5

Figure 1.18 Changes in storage modulus with temperature and transitions for polymers

Figure 1.19 Dynamic loss for the PLLA/POM blends as a function of temperature: (a) neat POM, (b) PLLA/POM = 20/80, (c) PLLA/POM = 40/60, (d) PLLA/POM = 50/50, (e) PLLA/POM = 60/40, (f) PLLA/POM = 80/20, and (g) neat PLLA.

Figure 1.20 DSC curves of NR, SBR, and BR

Figure 1.21 The glass transition temperatures of (a) NR/SBR blends as a function of the weight fraction of SBR, (b) NR/BR blends as a function of the weight fraction of BR, (c) SBR/BR blends as a function of the weight fraction of SBR.

Figure 1.22 Dielectric relaxation studies on fluoropolymers based on silicone rubber with EPDM
Figure 1.23 The stress-strain curve of a polymer and the important parameters that can be elucidated from it.

Figure 2.1 Structure of natural rubber monomer (polyisoprene)

Figure 2.2 Structure of nitrile rubber

Figure 2.3 Chemical structure of the surfactant in Cloisite 10A.

Figure 2.4 Dimethyl benzyl hydrogenated tallow modified montmorillonite clay (Cloisite 10A) a) SEM images b) EDX data c) XRD data

Figure 2.5 Mercapto silane modified kaolin clay (Cloisite 10A) a) SEM images b) EDX data c) XRD data

Figure 3.1 a) Torque vs time graph of the NR/NBR/O1Mt prepared using solution mixing (S) and dry mixing method (D)

Figure 3.2 The stress–strain graph of dry mixed and solution mixed NR/NBR/O1Mt in different blend composition with 5 phr O1Mt

Figure 3.3 TEM Micrograph of 100/0/5 -NR/NBR/O1Mt nanocomposites prepared using a) dry mixing method and b) solution mixing method.

Figure 3.4 TEM Micrograph of 30/70/5 - NR/NBR/O1Mt nanocomposites prepared using a) dry mixing method and b) solution mixing method.

Figure 3.5 The possible dispersion and distribution of O1Mt layers as observed from the morphological analysis for a 30/70 blend composition

Figure 3.6 TEM Micrograph of 70/30/5 NR/NBR/O1Mt nanocomposites prepared using a) dry mixing method and b) solution mixing method.

Figure 3.7 TEM Micrograph of 50/50/5 NR/NBR/O1Mt nanocomposites prepared using a) dry mixing method and b) solution mixing method.

Figure 3.8 TEM Micrograph of 0/100/5 NR/NBR/O1Mt nanocomposites prepared using a) dry mixing method and b) solution mixing method.

Figure 3.9 The strain amplitude dependence of storage modulus (G’) of varied NR/NBR composition with 5 phr O1Mt solution mixed and melt-blended NR/NBR/O1Mt compounds.
Figure 3.10 a) Solvent transport behavior of NR/NBR blends with 5 phr O1Mt prepared using solution mixed method and dry mixing method
b) Equilibrium solvent uptake of NR/NBR blends with 5 phr O1Mt prepared using solution mixed method and dry mixing method.
Figure 3.11 The gas permeability of behaviour of different NR/NBR/ O1Mt prepared using solution mixing method and dry mixing method.
Figure 3.12 The hysteresis behaviour of 70/30/5 NR/NBR/O1Mt prepared using two methods of preparation.
Figure 4.1 Cure profile graph of 0/100 NR/NBR blend with varying O1Mt loading
Figure 4.2 Cure profile graph of 70/30 NR/NBR blend with varying O1Mt loading
Figure 4.3 Cure profile graph of 30/70 NR/NBR blend with varying O1Mt loading
Figure 4.4 Cure profile graph of 50/50 NR/NBR blend with varying O1Mt loading
Figure 4.5 Cure profile graph of 0/100 NR/NBR blend with varying O1Mt loading
Figure 4.6: SEM images of the (a) 70/30 and (b) 50/50 NR/NBR blend with dispersed and co-continuous morphology.
Figure 4.7 The change in morphology of 50/50 NR/NBR nanocomposites with increase in nanoclay loading a),b),c) &d) corresponding to the blend nanocomposites with 0,2,5 and 10phr O1Mt respectively e) Schematic showing the change in morphology of 50/50(0) from cocontnious into dispersed morphology on adding O1Mt.
Figure 4.8 The change in domain size and surface area of 50/50 NR/NBR nanocomposites with increase in nanoclay loading
Figure 4.9 Hypothesis of changes that can take place on adding nanoclay at lower concentration and higher concentration
Figure 4.10 TEM images of 30/70 and 70/30 NR/NBR blend nanocomposites given to distinguish between NR and NBR phase.

Figure 4.11 The intercalated and slightly exfoliated morphology of O1Mt layers of 50/50 (5) NR/NBR blends.

Figure 4.12 Presence of clay at the interface for 50/50 at 10phr loading.

Figure 4.13 Suggested mechanism of compatibilization by O1Mt.

Figure 4.14 The XRD pattern of 50/50 blend nanocomposites at various loading.

Figure 4.15 TEM image of 50/50 (2)NR/NBR nanocomposite with exfoliated O1Mt.

Figure 4.16 Tan δ peak of 70/30 NR/NBR blends with different O1Mt loading.

Figure 4.17 Plot of the d_{pol}/d_{clay} vs the volume fraction of the added clay.

Figure 4.18 Graph showing the tan 11 peak of different NR./NBR/ O1Mt blends nanocomposites with 0 and 5 phr loading.

Figure 4.19 Storage modulus with different O1Mt loading for 70/30 composition.

Figure 4.20 Storage modulus with different NR/NBR/O1Mt nanocomposites with 5 phr loading.

Figure 4.21 Entanglement density of NR/NBR blend nanocomposites a) with varying composition b) with different O1Mt loading for 70/30 composition.

Figure 4.22 Stress - strain change for nanoclay filled and unfilled NR/NBR blend and the variation in tensile strength with rubber composition and filler loading.

Figure 4.23 Modulus for O1Mt filled and unfilled NR/NBR blend nanocomposites.

Figure 5.1 Percentage uptake of solvent against time of different NR/NBR blends in hexane a) at zero loading b) at 5 phr loading.

Figure 5.2 Percentage uptake of solvent against time of 50/50, NR/NBR blends nanocomposites in hexane with different clay loading.

Figure 5.3 Schematic showing a) NR/NBR blend without O1Mt b) with O1Mt.
Figure 5.4 Tensile strength of 50/50 NR/NBR blend nanocomposite with different clay loading.

Figure 5.5 Modulus value for 50/50 NR/NBR blend at different filler loading.

Figure 5.6 XRD pattern for 50/50 NR/NBR blend at different filler loading.

Figure 5.7 TEM images of NR/NBR (01Mt) nanocomposites, a) 50/50 (2) b) 50/50 (10)

Figure 5.8 Percentage uptake of solvent against time of 70/30(1), NR/NBR blends nanocomposite with different solvents.

Figure 5.9 Plot of solubility parameter vs equilibrium uptake in three solvents for different NR/NBR nanocomposites with 0phr and 5 phr clay loading.

Figure 5.10 Plot of interaction parameter vs equilibrium uptake in three solvents for different NR/NBR nanocomposites with 5phr clay loading.

Figure 5.11 Diffusion coefficient in hexane for different blend nanocomposites with different phr clay loading.

Figure 5.12a Diffusion coefficient of 50/50 NR/NBR blend with different clay loading.

Figure 5.12b Diffusion coefficient in hexane and toluene for 50/50 and 70/30 blend with different clay loading.

Figure 5.13 Schematic showing the clay network at lower loading and aggregates at higher loading.

Figure 5.14 Model fitting of the solvent permeation through NR/NBR blend nanocomposites using first order Kinetics.

Figure 5.15 Model fitting of the solvent permeation through NR/NBR blend nanocomposites using Peppas - Sahlin, Haguchi and Korsmeyer- Peppas.

Figure 6.1 a) Effect of nature of filler on the relaxation behavior of NR/NBR blend nanocomposite. Schematic representation shows the preferential migration of the two organically modified clay towards the polymers. The figure in the inset shows the plot of slope vs filler loading.

b) Normalised graph of the stress relaxation plot for different filler.
Figure 6.2 SEM images showing the O2Mt clay localized in the NR phase.

Figure 6.3 The hypothesis of interaction between O2Mt and NR.

Figure 6.4 TEM image showing the localization of O1Mt in 50/50 (2) blend nanocomposites a) & b) in the NBR phase and at the interface c) & d) the intercalated and exfoliated morphology of O1mt

Figure 6.5 a) Effect of filler loading on stress relaxation behavior of 50/50 NR/NBR blend nanocomposite with O1Mt. The schematic representation shows the intercalated aggregates of the O1Mt at different filler loading. In the inset the plot of slope vs filler loading is given.

b) Normalised graph of the stress relaxation plot for blend nanocomposites with varying filler loading.

Figure 6.6 SEM images showing the decrease in domain size of NBR dispersed phase.

Figure 6.7 XRD pattern of 50/50 blend with different O1Mt loading.

Figure 6.8 Stress relaxation curves of two different blend compositions of NR/NBR blend at two different temperatures. Inset, the slope

Figure 6.9 Time dependence of normalized stress for a) different NR/NBR blend nanocomposites with Cloisite 10Aand b) different C10A loaded 70/30 NR/NBR blend (Curve fitting with Kohlrausch model.)

Figure 6.10 Time dependence of normalized stress for a) different NR/NBR blend nanocomposites with Cloisite 10 Aand b) different C10A loaded 70/30 NR/NBR blend (Curve fitting with three element Maxwell-Weichert model.)

Figure 7.1 Oxygen permeability of different NR/ NBR nanocomposites with varying blend composition

Figure 7.2 SEM of 50/50 NR/NBR blend
Figure 7.3 Oxygen permeability of NBR nanocomposites with varying filler loading. (inset) the TEM image of NBR nanocomposite at 5 phr loading.

Figure 7.4 Oxygen permeability of NR nanocomposites with varying filler loading (inset) the TEM image of NR nanocomposite at 5 phr loading.

Figure 7.5 Oxygen permeability of 50/50 NR/NBR blend with varying filler loading.

Figure 7.6 TEM images showing of 50/50 NR/NBR blend with 2,5 and 10phr nanoclay.

Figure 7.7 Oxygen permeability of 30/70 NR/NBR blend with varying filler loading.

Figure 7.8 TEM images showing of 30/70 NR/NBR blend with 2, 5 and 10phr nanoclay.

Figure 7.9 Oxygen permeability of 70/30 NR/NBR blend with varying filler loading.

Figure 7.10 TEM images showing 70/30 NR/NBR blend with a)2 b)5 and c)10phr nanoclay.

Figure 7.11 Comparison of oxygen permeability and carbon dioxide permeability of 50/50 NR/NBR blend with varying filler loading.

Figure 7.12 Theoretical fitting of the permeability values for different blend nanocomposites.

Figure 7.13 The experimental data fitted to Nielson model for 50/50 NR/NBR/O1Mt nanocomposites with different clay loading.

Figure 7.14 The experimental data fitted to Bharadwaj model for 50/50 NR/NBR/O1Mt nanocomposites with different clay loading.

Figure 7.15 TEM micrograph of 50/50 NR/NBR/O1M

Figure 8.1 Frequency dependence curves of complex viscosity η^*for 70/30 NR/NBR blend.
Figure 8.2 Frequency dependence curves of complex viscosity η^* for 50/50 NR/NBR blend.

Figure 8.3 Frequency dependence curves of complex viscosity η^* for 30/70 NR/NBR blend.

Figure 8.4 Storage modulus vs. dynamic amplitude curves of for 30/70 NR/NBR blend with different filler loading.

Figure 8.5 Storage modulus vs. dynamic amplitude curves of for 70/30 NR/NBR blend with different filler loading.

Figure 8.6 Storage modulus vs. dynamic strain curves for 100/0 NR/NBR blend with different filler loading.

Figure 8.7 Storage modulus vs. dynamic strain curves for 50/50 NR/NBR blend with different filler loading.

Figure 8.8 Storage modulus vs. dynamic strain curves of for 0/100 NR/NBR blend with different filler loading.

Figure 8.9 Storage modulus vs. dynamic strain curves of for different NR/NBR blend composition with 2phr OMO1Mt loading.

Figure 8.10 Effect of nanoclay content on the first compressive loading-unloading cycles 100/0 NR/NBR nanocomposites.

Figure 8.11 Effect of nanoclay content on the first compressive loading-unloading cycles 70/30 NR/NBR nanocomposites.

Figure 8.12 Effect of nanoclay content on the first compressive loading-unloading cycles 50/50 NR/NBR nanocomposites.

Figure 8.13 Effect of nanoclay content on the first compressive loading-unloading cycles 0/100 NR/NBR nanocomposites.

Figure 8.14 Effect of nanoclay content on the 3 consecutive compressive loading-unloading cycles 100/0 NR/NBR nanocomposites.

Figure 8.15 Effect of nanoclay content on the 3 consecutive compressive loading-unloading cycles 30/70 NR/NBR nanocomposites.
Figure 8.16 Effect of nanoclay content on the 3 consecutive compressive loading-unloading cycles 50/50 NR/NBR nanocomposites

Figure 8.17 Effect of nanoclay content on the 3 consecutive compressive loading-unloading cycles of different NR/NBR nanocomposites with 2phr nanoclay

Figure 8.18 Thermal conductivity versus blend composition of NR/NBR blends.

Figure 8.19 Thermal conductivity versus filler volume fraction for O1Mt filled NR/NBR nanocomposites.

Figure 8.20 TEM images of 50/50 (10)NR/NBR bled nanocomposites a) co-continuous morphology with nanoclay layer dispersion in both phases and b) the presence of nanoclay at the interface of two elastomers.

Figure 8.21 Thermal conductivity versus filler volume fraction for O1Mt and O2Mt filled NR/NBR nanocomposites.

Table 1.1. Common characterization techniques for clay based polymer nanocomposites

Table 2.1 Characteristics of NR

Table 2.2 Characteristics of NBR

Table 2.3 Properties of layered silicate- Cloisite 10A

Table 2.4 Properties of layered silicate- Nanocaliber-200m

Table 1.5 The list of vulcanizing agents and their amount in blend nanocomposites

Table 3.1 Cure time of NR/NBR nanocomposite on varying the clay loading, blend composition and preparation method

Table 3.2 Mechanical property data of NR/NBR /O1Mt nanocomposite using solution mixing and dry mixing with 5phr O1Mt. The values of neat blend is given in the bracket.

Table 4.1 Cure Characteristics of NR/NBR blend nanocomposites
Table 4.2 The constrained region calculated for NR/NBR/O1Mt blend nanocomposites with different filler loading and different NR/NBR/O1Mt blend nanocomposites

Table 4.3 The Tg values of the different NR/NBR/O1Mt blend nanocomposites

Table 4.4 The full width at half peak value for NR/NBR/O1Mt blend nanocomposites with different filler loading

Table 5.1 The change in equilibrium uptake for 70/30(1), NR/NBR (O1Mt) with solubility parameter difference

Table 5.2 Values of n and k for different clay loading of NR/NBR blend nanocomposites

Table 5.3 Values of Permeation Coefficient

Table 5.4 Mol. wt between crosslink (Mc), crosslink density, (ν) swelling coefficient (β) and swelling index of the NR/NBR blend nanocomposites

Table 5.5 Values of M_c(Exp). M_c(ph), and M_c(aff). in/cm^3

Table 5.6 Correlation coefficient (R2) and constant (K) of different kinetic models

Table 6.1 Tensile properties of NR/NBR blend nanocomposites with the two different fillers.

Table 6.2 Curve fitting results for stress relaxation data according to figure 9a and 9b.

Table 6.3 Curve fitting results for stress relaxation data according to figure 6.9 and 6.10

Table 7.1 The theoretical assumption of two models used.

Table 8.1 Area inside the hysteresis loop for different NR/NBR nanocomposites.

Table 8.2 The area inside the hysteresis loop for the 3 consecutive compressive loading-unloading cycles 70/30 NR/NBR nanocomposites with two types of nanoclay.