Contents

Chapter 1 Introduction

1.1 Faults and Their Diagnosis 1
1.2 Fuzzy Fault Diagnosis Methodology (FFDM) 6
1.2.1 Why Fuzzy Logic in Fault Diagnosis for Textile Industry? 10
1.3 Literature survey 11
1.4 Research Aim and Objectives 16
1.5 Possible benefits and Novelty of approach 19
1.6 Outline of Present Research Work 21
1.7 Outline of Thesis 25
1.8 References 26

Chapter 2 Machine, Fault and Fault Diagnosis

2.1 Elements of the Industrial Revolution 31
2.2 Textile Sector 32
2.2.1 Loom 34
2.3 Fault 40
2.3.1 Types of Faults 41
2.3.2 Fault Models 43
2.3.2.1 Basic Faults Model 44
2.4 Fault Diagnostic Methods 46
2.4.1 Basic Maintenance Strategies 47
2.4.2 Fault Detection Methods (FDM) 55
2.4.3 Fault Diagnosis Methods 57
2.5 Sensors and Sensing Strategies 63
2.5.1 Current Transformer (CT) 64
2.5.2 Temperature sensor 64
2.5.3 Humidity Sensor 66
2.5.4 Optical Sensor/Proximity Sensor 67
2.5.5 Pressure Sensor 67
Contents

2.5.6 Oil Level Sensor

2.6 References

Chapter 3 Modeling of Fault Detection and Fuzzy Diagnosis

3.1 Modeling Fault Detection and Fuzzy Diagnosis

3.2 Motor Status Detection

- 3.2.1 FIS Design for Motor Status Detection
- 3.2.2 Rule Based Inference
- 3.2.3 Development of Simulation Set up
- 3.2.4 Rule Viewer
- 3.2.5 Surface Viewer

3.3 Environment Condition Determination

- 3.3.1 Air Conditioning Process for the Textile Industry
- 3.3.2 FIS for Environment Condition Determination
- 3.3.3 Rule Based Inference
- 3.3.4 Rule Viewer
- 3.3.5 Surface Viewer
- 3.3.6 Environment Condition Modeling

3.4 Lubrication Oil Tank Condition Determination

- 3.4.1 FIS for Oil Tank Condition
- 3.4.2 Rule Based Inference of Oil Tank
- 3.4.3 Rule Viewer of Oil Tank
- 3.4.4 Surface Viewer
- 3.4.5 Lubrication Oil Tank Modeling
- 3.4.5.1 Modeling of Oil Tank Level
- 3.4.5.2 Design of Oil Tank Model in Simulink
- 3.4.6 Oil Tank Condition Modeling
Chapter 4 Hardware Implementation of Fault Detection and Fuzzy Diagnosis

4.1 Introduction 127
4.2 Fault Collection Unit 131
4.3 Environment Fault Collection 132
 4.3.1 Temperature Measurement 133
 4.3.2 Humidity Measurement 134
4.4 Motor Fault Signal Collection 139
 4.4.1 Current Measurement 139
 4.4.1.1 Current Measurement: Series Resistance Method 140
 4.4.1.2 Current Measurement: Electromagnetic Based Current Sensing 141
 4.4.1.3 Current Measurement: Using Current Transformers 141
 4.4.1.4 Current Measurement: Using Air Core 143
 4.4.2 Line Voltage measurement 144
 4.4.3 Line Frequency Fault Measurement 146
4.5 Oil Tank Fault Collection 146
 4.5.1 Oil Pressure Measurement 148
 4.5.2 Oil Level Measurement 151
4.6 Other Fault Collection 152
 4.6.1 Optical Sensor 155
4.7 The Central Unit 159
 4.7.1 Block diagram 159
Chapter 5
Result and Conclusions

5.1 Results of Motor Condition FIS

5.1.1 Normal Operation Mode:

5.1.2 Unbalanced Input Voltage

5.1.3 Open Phase Output

5.1.4 Experimental results of Motor Condition

5.2 Simulation Results of Environment Condition Modeling

5.2.1 Environment Condition FIS Results with Real time Data for Weaving Section
5.3 Lubrication Oil Tank Condition 191
 Determination
5.3.1 Response of Oil Tank level Model 192
5.3.2 Simulation Results of Oil Tank 193
5.4 Simulation Results of Machine Health Determination 197
5.5 Conclusions 203
5.6 Future scope 204

Publications