


Hanley, K. J. (2010). Evaluating the surface protection and decontamination efficiency of DeconGel 1101 toward Cs-137 spilled on biological, salt-covered, rusty, wet and solid painted surfaces.


Management of terrorist events involving radioactive material. NCRP Report No. 138, 2001. [Publications can be ordered from National Council on Radiation Protection and Measurements.] Available at:


Nasvit, O. (1998). Research and Managing Institutions in Ukraine concerning the Radiological Consequences of the Chernobyl Accident. Research Activities about Radiological Consequences of the Chernobyl NPS Accident and Social Activities to Assist the Sufferers by the Accident. Research Reactor Institute, Kyoto University, 58-64.


Pellmar, TC., Rockwell, S. Priority list of research areas for radiological nuclear threat countermeasures. Radiation research. 2005;163(1):115-123.


Sugier, A., & Hubert, P. In the field of ionizing radiations, are the dosimetric data satisfactory?]. Revue d'épidémiologie et de santé publique. 2002;50(1):13.


http://en.wikipedia.org/wiki/Fukushima_Daiichi_nuclear_disaster;


Tuin, BJW., and Tels M. Removing heavy metals from contaminated clay soils by extraction with hydrochloric acid, EDTA or hypochlorite solutions. Environmental Technology. 1990;11(11):1039-1052.
Tuin, BJW., Tels, M. Distribution of six heavy metals in contaminated clay soils before and after extractive cleaning. Environmental technology. 1990;11(10): 935-948.


http://www.cddc.vt.edu/host/atomic/hiroshim/hiro_med.

www.city.nagasaki.lg.jp/peace/english/minimini/

http://www.umich.edu/~history/pages_folder/articles/Hiroshima_and_Nagasaki.

(https://www.threemileisland.org/downloads/188.