1. Introduction

Section A: Cold adapted bacteria
1.1 Extremophiles
1.2 Psychrotrophs and psychrophiles
 1.2.1 Significance of research on psychrotrophs and psychrophiles
 1.2.2 Biotechnological importance of psychrotrophs and psychrophiles
1.3 Ecological aspects of Antarctica
1.4 Antarctic Pseudomonas syringae LZ4W

Section B: Changes in bacterial physiology on cold shock
1.5 Cold shock response in mesophilic bacteria
 1.5.1 Changes in membrane lipid composition on cold shock
 1.5.2 Change in protein profile
 1.5.3 The CSP family of proteins
 1.5.4 Protein synthetic capacity and translational machinery
 1.5.5 Transcription and transcriptional machinery
 1.5.6 RNA stability
 1.5.7 RNA degradation
 1.5.8 Change in DNA synthesis and DNA topology
 1.5.9 Effect of cold shock on protein folding and protein degradation
1.6 Physiology of cold adapted bacteria
 1.6.1 Lipid composition and membrane fluidity at low temperature
 1.6.2 Cold adapted enzymes
 1.6.3 Cold shock response in psychrotrophs and psychrophiles
 1.6.4 CspA like proteins in cold adapted bacteria
2. Materials and methods

2.1 Materials

2.1.1 Source of chemicals and materials used

2.1.2 Bacterial strains and plasmids

2.1.3 Bacteriophages

2.1.4 Culture media

2.1.4.1 Culture media for \textit{E. coli}

2.1.4.2 Culture media for \textit{P. syringae}

2.1.5 Reagents and buffers

2.1.5.1 Solution for bacteriophage work

2.1.5.2 Solutions for molecular biology work

2.1.5.3 Antibiotic selection for \textit{E. coli} and \textit{P. syringae}

2.1.5.4 Electrophoresis buffers

2.1.5.5 Other important buffers

2.2 Methods

2.2.1 Bacterial conjugation

2.2.2 Construction of the \textit{recD} mutant of \textit{E. coli} by P1 transduction

2.2.3 Preparation of \textit{\lambda} MMS805 lysate

2.2.4 Plaque size assay

2.2.5 Preparation of T4 and T4 \textbf{Z} stock lysate

2.2.6 Titration of T4 stocks

2.2.7 Assay for sensitivity to UV and mitomycin C

2.2.8 Assay for plasmid stability

2.2.9 Growth curve

2.2.10 Agarose gel electrophoresis

2.2.11 Preparation of chromosomal DNA from \textit{P. syringae}

2.2.12 Isolation of plasmid DNA
2.2.12.1 Small scale isolation: alkaline lysis method 34
2.2.12.2 Small scale isolation: boiling lysis method 35
2.2.12.3 Medium scale isolation 35
2.2.12.4 Large scale isolation: cesium chloride method 36

2.2.13 Quantitation of nucleic acids 37
2.2.14 Digestion of DNA with restriction endonuclease 37
2.2.15 Ligation of DNA fragments 37
2.2.16 End filling using Klenow 37
2.2.17 Two-base fill-in of DNA ends 38
2.2.18 Preparation of competent cells for transformation 38
 2.2.18.1 Rubidium chloride method 38
 2.2.18.2 Preparation of ultracompetent cells 39
2.2.19 Transformation of competent and ultracompetent
 E. coli cells by heat shock 39
2.2.20 Electroporation of *P. syringae* competent cells 40
2.2.21 Self-cloning of the DNA flanking IS50L of Tn5-OT182 insertion 40
2.2.22 Self-cloning of the region flanking IS50R of Tn5-OT182 41
2.2.23 Cloning of the full-length *recD* gene of *P. syringae* 41
2.2.24 Random primer labelling of DNA with radioactive nucleotide 42
2.2.25 Sephadex G-50 column chromatography 42
2.2.26 Southern hybridization 42
2.2.27 Selection of recombinant clones by colony hybridization 43
2.2.28 Polymerase chain reaction (PCR) 44
2.2.29 Automated DNA sequencing 44
2.2.30 Sequencing of DNA using GPS™-1 Genome Priming System 45
2.2.31 Sequencing of the flanking DNA in pCSC1 45
2.2.32 Computer analysis of DNA sequence data 46
2.2.33 Estimation of protein 46
2.2.34 SDS-Polyacrylamide gel electrophoresis for proteins 46
2.2.35 Transfer of proteins onto PVDF membrane for Western analysis 47
3. Isolation and characterization of a cold sensitive mutant of the Antarctic psychrotrophic bacterium *Pseudomonas syringae*

3.1 Introduction
3.2 Results
 3.2.1 Isolation of rifampicin resistant mutant of *P. syringae* for use as recipient in conjugation experiments
 3.2.2 Transposon mutagenesis of *P. syringae*
 3.2.3 Isolation of a cold sensitive mutant
 3.2.4 Determination of copy number of the Tn5-OT182 in CS1
 3.2.5 Cloning of the flanking region of Tn5-OT182 from CS1
 3.2.6 Location of the transposon insertion in CS1
3.3 Discussion

4. Cloning and analysis of *recD* region from Antarctic *Pseudomonas syringae*

4.1 Introduction
4.2 Results
 4.2.1 Cloning of full length *recD*
 4.2.2 DNA sequencing of pRD4.4
 4.2.3 Cloning and sequencing of the region flanking IS50R of Tn5-OT182 in CS1
 4.2.4 Analysis of the *recD* region from *P. syringae*
 4.2.5 Comparison of *recD* region from different bacteria
 4.2.6 Comparison of RecD homologues from different bacteria
 4.2.7 A predictive analysis of RecD and RecB structure
4.3 Discussion
 4.3.1 Biochemical basis of RecBCD function during DNA repair and recombination
 4.3.2 Role of RecD in RecBCD function
4.3.3. Possible relation between known RecD function and its requirement under stress

5. Genetic analysis of recD requirement during growth of P. syringae

5.1 Introduction

5.2 Results

5.2.1 Targeted disruption of recD gene in the wild type P. syringae

5.2.1.1 Construction of the disruption vector pDD1 and pDD2

5.2.1.2 Isolation and characterization of LDD11

5.2.1.3 Isolation and characterization of LDD22

5.2.1.4 Growth properties of LDD11

5.2.1.5 Growth properties of LDD22

5.2.2 Genetic complementation analysis

5.2.2.1 Construction and mobilization of complementation vector pGR5

5.2.2.2 Growth properties of complemented strains

5.2.2.3 Construction of pGOR2

5.2.2.4 Complementation analysis using pGOR2

5.2.3 Complementation studies on E. coli recD mutants

5.2.3.1 Complementation of the E. coli recD mutation by P. syringae recD homologue

5.3 Discussion

6. A comparison of the recD mutant phenotypes of P. syringae and E. coli

6.1 Introduction

6.2 Results

6.2.1 The P. syringae CS1 is relatively more sensitive to DNA damaging agents
6.2.2 Plasmid instability of CS1 106
6.2.3 E. coli recD gene does not complement the cold sensitivity of CS1 109
6.2.4 E. coli recD mutants are not cold sensitive 109
6.3 Discussion 114

7. Accumulation of suppressors in P. syringae recD mutant on prolonged incubation at low temperature

7.1 Introduction 115
7.2 Results 115
 7.2.1 Viability of CS1 after incubation at 4°C 115
 7.2.2 The CS1 grows at 4°C on prolonged incubation 117
 7.2.3 The growth of CS1 at 4°C on prolonged incubation is not due to acclimation 117
 7.2.4 The Su strains have Tn5-OT182 in the recD gene 121
7.3 Discussion 121

8. General Discussion

8.1 Summary of results 122
8.2 RecB(BCD and double strand break repair 123
8.3 A unique role for RecD during growth under stress in extremophiles? 124
8.4 Requirement of exonucleases for low temperature growth 125
8.5 Future perspectives 127

References 128