REFERENCES


104. GSI, “Detailed information dossier (DID) on iron ores in India”, 2006.


177. Kruse, F.A. Use of airborne imaging spectrometer data to map minerals associated with hydrothermal altered rocks in Northern


208. Ministry of mines, http://mines.nic.in/ writereaddata/Contentlinks/be6cfa52b2fa4283bc947acf918be5eb.pdf, accessed on 05.05.2011.


230. Peddle, D.R. and Johnson, R.L. Spectral mixture analysis of airborne remote sensing imagery for improved prediction of leaf area index in


291. Soea Myint, Toe Aung Kyaw and Isao Takashima Application of Remote Sensing Techniques on Iron Oxide Detection from ASTER and Landsat Images of Tanintharyi Coastal Area, Myanmar, Scientific and Technical Reports of Faculty of

293. Srinivasan, R. Crystalline limestone in Tamil nadu, South india - Present utilisation and future prospects —Key papers to the Seminar on Carbonate rocks of Tamil Nadu, Madras, 1975.


Unmixing of the ASTER data at Sarduiyeh area”, SE Kerman, Iran, 26th Symposium on Geosciences, 17-19 Feb., Tehran, Iran, 2008.


328. Vitorello, I. and Galvao, L.S. “Spectral properties of geologic materials in the 400- to 2500 nm range: review for applications to mineral exploration and lithologic mapping, Photo Interpretation: Images Aeriennes et Spatiales, Vol.34, No 2, pp. 77-99,1996,


334. Wen Xing-Ping and Han Run-Sheng, “Integration of geologic, geophysical, geochemical and remotely sensed datasets for mineral exploration in Pulang porphyry copper deposit, Yunnan, China”, Goldschmidt Conference Abstracts, A1428, 2009.


342. Yitagesu, Van der meer, Van der Werff and Wolter zigterman, Multi variant regression analysis for deriving the Photogrammetry, Remote


