CONTENTS

CHAPTER – 1 GENERAL INTRODUCTION

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1.</td>
<td>History of salt</td>
<td>2</td>
</tr>
<tr>
<td>1.1.2.</td>
<td>Properties of salt</td>
<td>3</td>
</tr>
<tr>
<td>1.1.3.</td>
<td>Sources of sodium chloride</td>
<td>4</td>
</tr>
<tr>
<td>1.1.4.</td>
<td>Solar saltworks – A complex ecosystem</td>
<td>4</td>
</tr>
<tr>
<td>1.1.5.</td>
<td>Role of microorganisms in solar saltworks</td>
<td>5</td>
</tr>
<tr>
<td>1.1.6.</td>
<td>Microbial activities in saltern ponds</td>
<td>7</td>
</tr>
<tr>
<td>1.1.7.</td>
<td>Salt in chemical industries</td>
<td>8</td>
</tr>
<tr>
<td>1.1.8.</td>
<td>Consequences of salt</td>
<td>8</td>
</tr>
<tr>
<td>1.1.9.</td>
<td>World salt production</td>
<td>10</td>
</tr>
<tr>
<td>1.1.10.</td>
<td>Scope and aim of the present study</td>
<td>11</td>
</tr>
</tbody>
</table>

1.2. GENERAL MATERIALS AND METHODS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2.1.</td>
<td>Description of the study area</td>
<td>13</td>
</tr>
<tr>
<td>1.2.2.</td>
<td>Seasons of the study period</td>
<td>14</td>
</tr>
<tr>
<td>1.2.3.</td>
<td>Phases of salt production</td>
<td>14</td>
</tr>
<tr>
<td>1.2.4.</td>
<td>Physico-chemical parameters</td>
<td>14</td>
</tr>
<tr>
<td>1.2.5.</td>
<td>Plankton and classification</td>
<td>15</td>
</tr>
<tr>
<td>1.2.6.</td>
<td>Bulk measurements</td>
<td>15</td>
</tr>
<tr>
<td>1.2.7.</td>
<td>Microalgae identification and culture</td>
<td>16</td>
</tr>
<tr>
<td>1.2.8.</td>
<td>Preparation of Walne’s medium</td>
<td>16</td>
</tr>
<tr>
<td>1.2.9.</td>
<td>Salt quality analysis</td>
<td>17</td>
</tr>
<tr>
<td>1.2.10.</td>
<td>Statistical Analysis</td>
<td>17</td>
</tr>
<tr>
<td>1.2.10.1.</td>
<td>Standard Deviation (SD)</td>
<td>17</td>
</tr>
<tr>
<td>1.2.10.2.</td>
<td>Student’s ‘t’ test</td>
<td>17</td>
</tr>
<tr>
<td>1.2.10.3.</td>
<td>Two way Analysis of Variance</td>
<td>18</td>
</tr>
</tbody>
</table>
CHAPTER – 2 REVIEW OF LITERATURE

2.1. A Brief account on the characteristics of saltworks 20
2.2. Role of physico-chemical parameters and their importance 26
2.3. Phytoplankton communities in hypersaline environment of salt pans 30
2.4. Phytoplankton composition in relation to some ecological factors 33
2.5. Salt crystallization in solar salt works 34

CHAPTER – 3 PHYSICO-CHEMICAL PARAMETERS OF BRINE IN VARIOUS PONDS OF PUTHALAM SALTWORKS

3.1. INTRODUCTION 36

3.2. MATERIALS AND METHODS 41

3.2.1. Study sites and sampling 41
3.2.2. Analysis of physico-chemical parameters 42
 3.2.2.1. Rainfall 42
 3.2.2.2. Atmospheric temperature 42
 3.2.2.3. Brine temperature 42
 3.2.2.4. pH 42
 3.2.2.5. Depth 42
 3.2.2.6. Salinity (Brine density) 42
 3.2.2.7. Estimation of Biological Oxygen Demand 43
 3.2.2.8. Estimation of Total Dissolved Solids 45
 3.2.2.9. Estimation of chloride 46
 3.2.2.10. Estimation of sulphate 47
 3.2.2.11. Estimation of sodium 49
 3.2.2.12. Estimation of calcium 50
 3.2.2.13. Estimation of iron 51
 3.2.2.14. Estimation of magnesium 53
 3.2.2.15. Estimation of potassium 54

3.3. RESULTS 56

3.3.1. Rainfall 56
3.3.2. Atmospheric temperature 57
3.3.3. Brine temperature 57
3.3.4. pH 59
3.3.5. Depth of the ponds 60
3.3.6. Salinity (Brine density) 61
3.3.7. Biological oxygen demand (BOD) 62
3.3.8. Total dissolved solids (TDS) 63
3.3.9. Chloride content 64
3.3.10. Sulphate content 66
3.3.11. Sodium content 67
3.3.12. Calcium content 68
3.3.13. Iron content 69
3.3.14. Magnesium content 70
3.3.15. Potassium content 72

3.4. DISCUSSION 74

CHAPTER – 4 ALGAL DISTRIBUTION, ABUNDANCE AND PHYTOPLANKTON COMPOSITION IN PUTHALAM SALTWORKS

4.1. INTRODUCTION 85

4.1.1. Phytoplankton from a healthy solar saltwork ecosystem 86
4.1.2. Biochemical composition of microalgae 88

4.2. MATERIALS AND METHODS 92

4.2.1. Algal sampling and analysis 92
4.2.2. Estimation of total protein 93
4.2.3. Estimation of chlorophyll 95

4.3. RESULTS 97

4.3.1. Microalgae and its abundance in the reservoir pond during first year 97
4.3.2. Microalgae and its abundance in the reservoir pond during second year 99
4.3.3. Microalgae in the condenser pond during the first year of study

4.3.4. Microalgae in the condenser pond during the second year of study

4.3.5. Phytoplankton in the crystallizer pond during the first year study period

4.3.6. Phytoplankton in the crystallizer pond during the second year study period

4.3.7. Benthic semi-dried algal mats in the reservoir pond during the first year

4.3.8. Benthic semi-dried algal mats in the reservoir pond during the second year

4.3.9. Protein content in the algal samples during the first year study

4.3.10. Protein content in the algal samples during the second year study

4.3.11. Chlorophyll – a content in the algal samples during the first year study

4.3.12. Chlorophyll – a content in the algal samples during the second year study

4.4. DISCUSSION

4.4.1. Saltern ecosystem and their biota related to ecological factors

4.4.2. Changes in biomolecules of microalgal samples in response to saltern environments

CHAPTER – 5 THE PROMOTION OF SALT QUALITY THROUGH ALGAL INOCULATION IN PUTHALAM SALTWORKS

5.1. INTRODUCTION

5.2. MATERIALS AND METHODS

5.2.1. Sampling and microalgae isolation

5.2.2. Algal culture and growth conditions

5.2.3. From the laboratory to the field

5.2.4. Salt quality analysis

5.2.4.1. Determination of moisture content

5.2.4.2. Determination of insoluble matter

5.2.4.3. Preparation of 0.1N sodium chloride stock solution
5.3. RESULTS 132

5.3.1. Dunaliella algal count in the experimental and control ponds during the study periods (from March 2009 to February 2011) 132

5.3.2. Salt quality parameters during the first year study period 134

5.3.2.1. Moisture content 135
5.3.2.2. Insoluble matter 136
5.3.2.3. Sulphate content 138
5.3.2.4. Calcium content 140
5.3.2.5. Magnesium content 141
5.3.2.6. Sodium chloride 143

5.4. DISCUSSION 145

6. SUMMARY 152

7. REFERENCES 160

INTERNATIONAL PAPERS