Index

Acknowledgement i
Preface ii
Abstract iii
Table of Content v
List of Figures vii
List of Tables x
Nomenclature xi

Chapter 1: Introduction:

1.1 Introduction. 1
1.2 Introduction to Magnetic Materials. 6
1.3 Characteristics of Magnetic Materials. 9
1.4 Structure of Ferrites. 12
1.5 Organization of Thesis. 18

Chapter 2: Literature Review:

2.1 Introduction 22
2.2 Synthesis of NiCuZn Ferrites. 22
2.3 Applications of Ferrites. 32
2.4 Scope of the Present Study. 33
2.5 Objectives of Present Work. 33

Chapter 3: Synthesis and Characterization:

3.1 Synthesis Techniques of Ferrites. 42
3.2 Classification of Methods. 43
3.3 Sol-Gel Auto-Combustion Synthesis. 45
3.4 Introduction to Experimental Techniques. 49

Chapter 4: Optimization of Zn Concentration in Ni_{0.8-x}Cu_{0.2}Zn_{x}Fe_{2}O_{4} Ferrite

(x=0.0≤0.6)

4.1 Introduction. 63
4.2 Experimental Techniques. 64
Chapter 5: Fabrication and Physical Characterization of \(\text{Ni}_{0.8-x}\text{Cu}_x\text{Zn}_{0.2}\text{Fe}_2\text{O}_4 \) ferrite (\(x=0.0 \leq 0.6 \))

5.1 Introduction.
5.2 Experimental Techniques.
5.3 Structural Aspects.
5.4 Dielectric Characteristics.
5.5 Magnetization.
5.6 UV Analysis.
5.7 Conclusions.

Chapter 6: Conclusions and Future Scope

6.1 Conclusions.
 i) Effect of Zn Substitution in \(\text{Ni}_{0.8-x}\text{Cu}_{0.2}\text{Zn}_x\text{Fe}_2\text{O}_4 \)
 ii) Effect of Cu Substitution in \(\text{Ni}_{0.8-x}\text{Cu}_x\text{Zn}_{0.2}\text{Fe}_2\text{O}_4 \)

6.2 Scope for Future Work.

Appendix-I