TABLE OF CONTENTS

DECLARATION BY THE SCHOLAR

SUPERVISOR'S CERTIFICATE

ACKNOWLEDGEMENT

SYNOPSIS

LIST OF ABBREVIATIONS

LIST OF FIGURES

LIST OF TABLES

LIST OF PUBLICATIONS

CHAPTER 1: INTRODUCTION

1.1 OVERVIEW 1

1.2 SOFTWARE DEFECTS 3

1.2.1 DIFFERENCE BETWEEN DEFECT, FAILURE, FAULT, ERROR, AND PROBLEM 4

1.2.2 SOFTWARE DEFECT LIFE CYCLE 5

1.3 SOFTWARE MEASUREMENT 7

1.3.1 DIRECT AND INDIRECT MEASUREMENT 8

1.3.2 MEASUREMENT FOR PREDICTION 8

1.3.3 CLASSIFICATION OF SOFTWARE MEASURE 9

1.3.4 SOFTWARE QUALITY MEASUREMENT 10

1.4 PREDICTION IN SOFTWARE QUALITY MANAGEMENT 10
1.4.1 Software Defect Prediction
1.4.2 Software Defect Prediction Techniques
 1.4.2.1 Techniques to Predict Number of Defects
 1.4.2.2 Techniques for Defect Classification
 1.4.2.3 Limitations of Defect Prediction Techniques
1.5 Objectives of the Research Work
1.6 Organization of the Thesis

Chapter 2: Literature Survey

2.1 Overview
2.2 Software Product Metrics
 2.2.1 Object-Oriented Metrics
 2.2.1.1 CK-Metrics Suite
 2.2.1.2 MOOD Metrics Suite
 2.2.2 Halstead Software Science
 2.2.3 Cyclomatic Complexity
2.3 Review of Defect Density and Size Metrics
2.4 Review of Defect Prediction Technique
2.5 Review of Open Source Software
 2.5.1 Open Source Development vs. Commercial Development
 2.5.2 Defect Density of Open Source Software
2.6 Scope of Work and Problems Identification
CHAPTER 5: EMMIPRICAL VALIDATION OF DEFECT DENSITY PREDICTION USING STATIC CODE METRICS

5.1 INTRODUCTION 89
5.2 RELATED WORK 91
5.3 STATIC CODE METRICS 94
 5.3.1 SIZE METRICS 95
 5.3.2 CHIDAMBER AND KEMERER (CK) METRICS 96
 5.3.3 COMPLEXITY METRICS 96
 5.3.4 HALSTEAD METRICS 96
5.4 RESEARCH METHODOLOGY AND DATA 97
 5.4.1 PROPOSED APPROACH 97
 5.4.2 DATA COLLECTION 98
 5.4.3 DATA PRE-PROCESSING 98
 5.4.4 RESEARCH PROCESS 103
5.5 EXPERIMENTAL RESULT AND DISCUSSION 104
 5.5.1 SIMPLE LINEAR REGRESSION 105
 5.5.2 MULTIPLE LINEAR REGRESSION 108
 5.5.3 REGRESSION MODEL 117
5.6 SUMMARY 118

CHAPTER 6: EFFECT OF HYBRID METRICS SUITE ON DEFECT DENSITY: AN EMPIRICAL ANALYSIS

6.1 INTRODUCTION 119
6.2 RELATED WORK 121
<table>
<thead>
<tr>
<th>Chapter 7: Prediction of Defect Density in Open Source Software Using Repository Metric Suite</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Introduction</td>
</tr>
<tr>
<td>7.2 Related Work</td>
</tr>
<tr>
<td>7.3 Repository Metrics</td>
</tr>
<tr>
<td>7.4 Research Hypotheses</td>
</tr>
<tr>
<td>7.4.1 Formulation of Research Hypotheses</td>
</tr>
<tr>
<td>7.4.2 Data Collection</td>
</tr>
<tr>
<td>7.4.3 Research Methodology</td>
</tr>
<tr>
<td>7.5 Experimental Result</td>
</tr>
<tr>
<td>7.6 Performance Evaluation</td>
</tr>
<tr>
<td>7.7 Threats to Validity</td>
</tr>
<tr>
<td>7.8 Summary</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 8: Conclusions and Scope of Future Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Conclusions</td>
</tr>
<tr>
<td>8.2 Scope of Future Work</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>158</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Appendix</th>
</tr>
</thead>
<tbody>
<tr>
<td>170</td>
</tr>
</tbody>
</table>