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Analysis and Synthesis for Pyramid Based Textures

V Karthikeyani        K Duraiswamy        P Kamalakkannan

Abstract

This paper describes a method for synthesizing images that match the texture appearance
of a given digitized sample. This synthesis is completely automatic and requires only the
“target” texture as input. It allows generation of as much texture as desired so that any
object can be covered. It can be used to produce solid textures for creating textured 3-d
objects without the distortions inherent in texture mapping. It can also be used to synthesize
texture mixtures, images that look a bit like each of several digitized samples. The approach
is based on a model of human texture perception, and has potential to be a practically
useful tool for graphics applications.
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0. Introduction

Computer renderings of objects with surface texture are more interesting and realistic than those without
texture. Texture mapping [15] is a technique for adding the appearance of surface detail by wrapping or
projecting a digitized texture image onto a surface. Digitized textures can be obtained from a variety of
sources, e.g., cropped from a photoCD image, but the resulting texture chip may not have the desired
size or shape. To cover a large object you may need to repeat the texture; this can lead to unacceptable
artifacts either in the form of visible seams, visible repetition, or both.

Texture mapping suffers from an additional fundamental problem: often there is no natural map from the
(planar) texture image to the geometry/topology of the surface, so the texture may be distorted unnaturally
when mapped. There are some partial solutions to this distortion problem [15] but there is no universal
solution for mapping an image onto an arbitrarily shaped surface. An alternative to texture mapping is to
create (paint) textures by hand directly onto the 3-d surface model [14], but this process is both very labor
intensive and requires considerable artistic skill. Another alternative is to use computer-synthesized
textures so that as much texture can be generated as needed. Furthermore, some of the synthesis
techniques produce textures that tile seamlessly.

Using synthetic textures, the distortion problem has been solved in two different ways. First, some
techniques work by synthesizing texture directly on the object surface (e.g., [31]). The second solution is
to use solid textures[19, 23, 24]. A solid texture is a 3-d array of color values. A point on the surface of an
object is colored by the value of the solid texture at the corresponding 3-d point. Solid texturing can be a
very natural solution to the distortion problem: there is no distortion because there is no mapping.
However, existing techniques for synthesizing solid textures can be quite cumbersome. One must learn
how to tweak the parameters or procedures of the texture synthesizer to get a desired effect.

This paper presents a technique for synthesizing an image (or solid texture) that matches the appearance
of a given texture sample. The key advantage of this technique is that it works entirely from the example
texture, requiring no additional information or adjustment. The technique starts with a digitized image
and analyzes it to compute a number of texture parameter values. Those parameter values are then used
to synthesize a new image (of any size) that looks (in its color and texture properties) like the original. The
analysis phase is inherently two-dimensional since the input digitized images are 2-d. The synthesis
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phase, however, may be either two- or three- dimensional. For the 3-d case, the output is a solid texture
such that planar slices through the solid look like the original scanned image. In either case, the (2-d or
3-d) texture is synthesized so that it tiles seamlessly.

1. Texture Models

Textures have often been classified into two categories, deterministic textures and stochastic textures. A
deterministic texture is characterized by a set of primitives and a placement rule (e.g., a tile floor). A
stochastic texture, on the other hand, does not have easily identifiable primitives (e.g., granite, bark,
sand). Many real-world textures have some mixture of these two characteristics (e.g. woven fabric,
woodgrain, plowed fields).

Much of the previous work on texture analysis and synthesis can be classified according to what type of
texture model was used. Some of the successful texture models include reaction diffusion [31, 34],
frequency domain [17], fractal [9, 18], and statistical/ random field [1, 6, 8, 10, 12, 13, 21, 26] models.
Some (e.g., [10]) have used hybrid models that include a deterministic (or periodic) component and a
stochastic component. In spite of all this work, scanned images and hand-drawn textures are still the
principle source of texture maps in computer graphics.

This paper focuses on the synthesis of stochastic textures. Our approach is motivated by research on
human texture perception. Current theories of texture discrimination are based on the fact that two
textures are often difficult to discriminate when they produce a similar distribution of responses in a bank
of (orientation and spatial-frequency selective) linear filters [2, 3, 7, 16, 20, 32]. The method described
here, therefore, synthesizes textures by matching distributions (or histograms) of filter outputs. This
approach depends on the principle (not entirely correct as we shall see) that all of the spatial information
characterizing a texture image can be captured in the first order statistics of an appropriately chosen set
of linear filter outputs. Nevertheless, this model (though incomplete) captures an interesting set of
texture properties.

Computational efficiency is one of the advantages of this approach compared with many of the previous
texture analysis/ synthesis systems. The algorithm involves a sequence of simple image processing
operations: convolution, subsampling, upsampling, histograming, and nonlinear transformations using
small lookup tables. These operations are fast, simple to implement, and amenable to special purpose
hardware implementations (e.g., using DSP chips).

2. Pyramid Texture Matching

The pyramid-based texture analysis/synthesis technique starts with an input (digitized) texture image
and a noise image (typically uniform white noise). The algorithm modifies the noise to make it look like
the input texture (figures 2, 3, 4). It does this by making use of an invertible image representation known
as an image pyramid, along with a function, match-histogram, that matches the histograms of two
images. We will present examples using two types of pyramids: the Laplacian pyramid (a radially
symmetric transform) and the steerable pyramid (an oriented transform).

2.1 Image Pyramids

A linear image transform represents an image as a weighted sum of basis functions. That is, the image,
I(x, y), is represented as a sum over an indexed collection of functions, g i(x, y):
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                      I(x, y) = S yigi(x, y);

                                     i

where yi are the transform coefficients. These coefficients are computed from the signal by projecting
onto a set of projection functions, h i(x, y):

                         yi = S  h i(x, y)I(x, y):

                               x,y

For example, the basis functions of the Fourier transform are sinusoids and cosinusoids of various
spatial frequencies. The projection functions of the Fourier transform are also (co-)sinusoids.

In many image-processing applications, an image is decomposed into a set of subbands, and the
information within each subband is processed more or less independently of that in the other subbands.
The subbands are computed by convolving the image with a bank of linear filters. Each of the projection
functions is a translated (or shifted) copy of one of the convolution kernels (see [28] for an introduction to
subband transforms and image pyramids).

An image pyramid is a particular type of subband transform. The defining characteristic of an image
pyramid is that the basis/ projection functions are translated and dilated copies of one another (translated
and dilated by a factor or 2j for some integer j). The subbands are computed by convolving and
subsampling. For each successive value of j, the subsampling factor is increased by a factor of 2. This
yields a set of subband images of different sizes (hence the name image pyramid) that correspond to
different frequency bands.

In an independent context, mathematicians developed a form of continuous function representation
called wavelets(see [30] for an introduction to wavelets), that are very closely related to image pyramids.
Both wavelets and pyramids can be implemented in an efficient recursive manner, as described next.

Laplacian Pyramid : The Laplacian pyramid [4, 5, 22] is computed using two basic operations: reduce
and expand. The reduce operation applies a low-pass filter and then subsamples by a factor of two in
each dimension. The expand operation upsamples by a factor of two (padding with zeros in between
pixels) and then applies the same low-pass filter. A commonly used low-pass filter kernel (applied
separably to the rows and columns of an image) is: 1/16 (1, 4, 6, 4, 1).

One complete level of the pyramid consists of two images, l0 (a low-pass image), and b0(a high-pass
image), that are computed as follows:

l0 = Reduce(im)

b0 = im - Expand(l0),

where im is the original input image. Note that the original image can be trivially reconstructed from l 0 and
b0:

reconstructed-im = b0 + Expand(l0).
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The next level of the pyramid is constructed by applying the same set of operations to the l0 image,
yielding two new images, l1 and b1. The full pyramid is constructed (via the make-pyramid function) by
successively splitting the low-pass image l i into two new images, l i+1 (a new low-pass image) and b i+1 (a
new band-pass image).

The combined effect of the recursive low-pass filtering and sub/upsampling operations yields a subband
transform whose basis functions are (approximately) Gaussian functions. In other words, the transform
represents an image as a sum of shifted, scaled, and dilated (approximately) Gaussian functions. The
projection functions of this transform are (approximately) Laplacian-of-Gaussian (mexican-hat) functions,
hence the name Laplacian pyramid. Note that the pyramid is not computed by convolving the image
directly with the projection functions. The recursive application of the reduce and expand operations
yields the same result, but much more efficiently.

In the end, we get a collection of pyramid subband images consisting of several bandpass images and
one leftover lowpass image. These images have different sizes because of the subsampling operations;
the smaller images correspond to the lower spatial frequency bands (coarser scales). Note that the
original image can always be recovered from the pyramid representation (via the collapse-pyramid
function) by inverting the sequence of operations, as exemplified above.

Steerable Pyramid : Textures that have oriented or elongated structures are not captured by the Laplacian
pyramid analysis because its basis functions are (approximately) radially symmetric. To synthesize
anisotropic textures, we adopt the steerable pyramid transform [25, 29]. Like the Laplacian pyramid, this
transform decomposes the image into several spatial frequency bands. In addition, it further divides
each frequency band into a set of orientation bands.

The steerable pyramid was used to create all of the images in this paper. The Laplacian pyramid was
used (in addition to the steerable pyramid, see Section 4) for synthesizing the solid textures. Fig 1 shows
the analysis/synthesis representation of the steerable pyramid transform. The left-hand side of the
diagram is the analysis part (make-pyramid) and the right hand side is the synthesis part (collapse-
pyramid). The circles in between represent the decomposed subband images. The transform begins
with a high-pass/low-pass split using a low-pass filter with a radially symmetric frequency response; the
high-pass band corresponds to the four corners of the spatial frequency domain. Each successive level
of the pyramid is constructed from the previous level’s lowpass band by a applying a bank of band-pass
filters and a low-pass filter.

Fig 1:  System diagram for the first level of the steerable pyramid. Boxes represent filtering and
subsampling operations: H0 is a high-pass filter, L0 and Li are low-pass filters, and Bi are oriented

bandpass filters.
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The orientation decomposition at each level of the pyramid is “steerable” [11], that is, the response of a
filter tuned to any orientation can be obtained through a linear combination of the responses of the four
basis filters computed at the same location. The steerability property is important because it implies that
the pyramid representation is locally rotation-invariant. The steerable pyramid, unlike most discrete
wavelet transforms used in image compression algorithms, is non-orthogonal and over complete; the
number of pixels in the pyramid is much greater than the number of pixels in the input image (note that
only the low-pass band is subsampled). This is done to minimize the amount of aliasing within each
subband. Avoiding aliasing is critical because the pyramid-based texture analysis/synthesis algorithm
treats each subband independently.

The steerable pyramid is self-inverting; the filters on the synthesis side of the system diagram are the
same as those on the analysis side of the diagram. This allows the reconstruction (synthesis side) to be
efficiently computed despite the non-orthogonality. Although the steerable pyramid filter kernels are
nonseparable, any nonseparable filter can be approximated (often quite well) by a sum of several separable
filter kernels [25]. Using these separable filter approximations would further increase the computational
efficiency.

Psychophysical and physiological experiments suggest that image information is represented in visual
cortex by orientation and spatial-frequency selective filters. The steerable pyramid captures some of the
oriented structure of images similar to the way this information is represented in the human visual
system. Thus, textures synthesized with the steerable pyramid look noticeably better than those synthesized
with the Laplacian pyramid or some other nonoriented representation. Other than the choice of pyramid,
the algorithm is exactly the same.

2.2 Histogram Matching

Histogram matching is a generalization of histogram equalization. The algorithm takes an input image
and coerces it via a pair of lookup tables to have a particular histogram. The two lookup tables are: (1) the
cumulative distribution function (cdf) of one image, and (2) the inverse cumulative distribution function
(inverse cdf) of the other image. An image’s histogram is computed by choosing a binsize (we typically
use 256 bins), counting the number of pixels that fall into each bin, and dividing by the total number of
pixels. An image’s cdf is computed from its histogram simply by accumulating successive bin counts.

The cdf is a lookup table that maps from the interval [0,256] to the interval [0,1]. The inverse cdf is a lookup
table that maps back from [0,1] to [0,256]. It is constructed by resampling (with linear interpolation) the cdf
so that its samples are evenly spaced on the [0,1] interval.

These two lookup tables are used by the match-histogram function to modify an image (im1) to have the
same histogram as another image (im2):

Match-histogram (im1,im2)

im1-cdf = Make-cdf(im1)

im2-cdf = Make-cdf(im2)

inv-im2-cdf = Make-inverse-lookup-table(im2-cdf)

Loop for each pixel do

                       im1[pixel] = Lookup(inv-im2-cdf, Lookup(im1-cdf, im1[pixel]))
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2.3 Texture Matching

The match-texture function modifies an input noise image so that it looks like an input texture image.
First, match the histogram of the noise image to the input texture. Second, make pyramids from both the
(modified) noise and texture images. Third, loop through the two pyramid data structures and match the
histograms of each of the corresponding pyramid subbands. Fourth, collapse the (histogram-matched)
noise pyramid to generate a preliminary version of the synthetic texture. Matching the histograms of the
pyramid subbands modifies the histogram of the collapsed image. In order to get both the pixel and
pyramid histograms to match we iterate, rematching the histograms of the images, and then rematching
the histograms of the pyramid subbands.

Match-texture(noise,texture)
     Match-Histogram (noise,texture)
     analysis-pyr = Make-Pyramid (texture)
     Loop for several iterations do
          synthesis-pyr = Make-Pyramid (noise)
          Loop for a-band in subbands of analysis-pyr
               for s-band in subbands of synthesis-pyr do
        Match-Histogram (s-band,a-band)
           noise = Collapse-Pyramid (synthesis-pyr)
           Match-Histogram (noise,texture)

Whenever an iterative scheme of this sort is used there is a concern about convergence. In the current
case we have not formally investigated the convergence properties of the iteration, but our experience is
that it always converges. However, stopping the algorithm after several (5 or so) iterations is critical. As is
the case with nearly all discrete filters, there are tradeoffs in the design of the steerable pyramid filters
(e.g., filter size versus reconstruction accuracy). Since the filters are not perfect, iterating too many times
introduces artifacts due to reconstruction error.

The core of the algorithm is histogram matching which is a spatially local operation. How does this
spatially local operation reproduce the spatial characteristics of textures? The primary reason is that
histogram matching is done on a representation that has intrinsic spatial structure. A local modification
of a value in one of the pyramid subbands produces a spatially correlated change in the reconstructed
image. In other words, matching the pointwise statistics of the pyramid representation does match some
of the spatial statistics of the reconstructed image. Clearly, only spatial relationships that are represented
by the pyramid basis functions can be captured in this way so the choice of basis functions is critical. As
mentioned above, the steerable pyramid basis functions are a reasonably good model of the human
visual system’s image representation.

If we had a complete model of human texture perception then we could presumably synthesize perfect
texture matches. By analogy, our understanding of the wavelength encoding of light in the retina allows us
to match the color appearance of (nearly) any color image with only three colored lights (e.g., using an
RGB monitor). Lights can be distinguished only if their spectral compositions differ in such a way as to
produce distinct responses in the three photoreceptor classes. Likewise, textures can be distinguished
only if their spatial structures differ in such a way as to produce distinct responses in the human visual
system.
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2.4 Edge Handling

Proper edge handling in the convolution operations is important. For the synthesis pyramid, use circular
convolution. In other words, for an image I(x, y) of size NxN, define: I(x, y) = I(x mod N, y mod N). Given that
the synthesis starts with a random noise image, circular convolution guarantees that the resulting synthetic
texture will tile seamlessly.

For the analysis pyramid, on the other hand, circular convolution would typically result in spuriously large
filter responses at the image borders. This would, in turn, introduce artifacts in the synthesized texture. A
reasonable border handler for the analysis pyramid is to pad the image with a reflected copy of itself.
Reflecting at the border usually avoids spurious responses (except for obliquely oriented textures).

2.5 Color

The RGB components of a typical texture image are not independent of one another. Simply applying the
algorithm to R, G, and B separately would yield color artifacts in the synthesized texture. Instead, color
textures are analyzed by first transforming the RGB values into a different color space. The basic algorithm
is applied to each transformed color band independently producing three synthetic textures. These three
textures are then transformed back into the RGB color space giving the final synthetic color texture.

The color-space transformation must be chosen to decorrelate the color bands of the input texture
image. This transformation is computed from the input image in two steps. The first step is to subtract the
mean color from each pixel. That is, subtract the average of the red values from the red value at each pixel,
and likewise for the green and blue bands. The resulting color values can be plotted as points in a three-
dimensional color space. The resulting 3-d cloud of points is typically elongated in some direction, but
the elongated direction is typically not aligned with the axes of the color space.

The second step in the decorrelating color transform rotates the cloud so that its principle axes align with
the axes of the new color space. The transform can be expressed as a matrix multiplication, y = Mx, where
x is the RGB color (after subtracting the mean) of a particular pixel, y is the transformed color, and M is a
3x3matrix.

The decorrelating transform M is computed from the covariance matrix C using the singular-value-
decomposition (SVD). Let D be a 3xN matrix whose columns are the (mean-subtracted) RGB values of
each pixel. The covariance matrix is: C = DDt, where Dt means the transpose of D. The SVD algorithm
algorithm decomposes the covariance matrix into the product of three components, C = US2Ut. Here, U is
an orthonormal matrix and S2 is a diagonal matrix. These matrices (C, U and S 2) are each 3x3, so the SVD
can be computed quickly. The decorrelating transform is: M = S -1Ut, where S is a diagonal matrix obtained
by taking the square-root of the elements of S2.

After applying this color transform, the covariance of the transformed color values is the identity matrix.
Note that the transformed color values are: MD=S-1UtUSVt = Vt. It follows that the covariance of the
transformed color values is: VtV = I.

The color transform is inverted after synthesizing the three texture images in the transformed color
space. First, multiply the synthetic texture’s color values at each pixel byM-1. This produces three new
images (color bands) transformed back into the (mean subtracted) RGB color space. Then, add the
corresponding mean values (the means that were subtracted from the original input texture) to each of
these color bands.
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3. Solid Textures

Pyramid-based texture analysis/synthesis can also be used to make isotropic 3-d solid textures. We
start with an input image and a block of 3-d noise. The algorithm coerces the noise so that any slice
through the block looks like the input image. The solid texture synthesis algorithm is identical to that
described above, except for the choice of pyramid: use a 2-d Laplacian pyramid for analysis and a 3-d
Laplacian pyramid for synthesis. As usual, match the histograms of the corresponding subbands. Note
that since the Laplacian pyramid is constructed using separable convolutions, it extends trivially to three-
dimensions.

We have obtained better looking results using a combination of Laplacian and steerable pyramids. On
the analysis side, construct a 2-d Laplacian pyramid and a 2-d steerable pyramid. On the synthesis side,
construct a 3-d Laplacian pyramid and construct steerable pyramids from all two-dimensional (x-y, x-z,
and y-z) slices of the solid. Match the histograms of the 3-d (synthesis) Laplacian pyramid to the
corresponding histograms of the 2-d (analysis) Laplacian pyramid. Match the histograms of each of the
many synthesis steerable pyramids to the corresponding histograms of the analysis steerable pyramid.
Collapsing the synthesis pyramids gives four solids (one from the 3-d Laplacian pyramid and one from
each set of steerable pyramids) that are averaged together.

4. Texture Mixtures

Fig 5 shows some texture mixtures that were synthesized by choosing the color palette (decorrelating
color transform) from one image and the pattern (pyramid subband statistics) from a second image. One
can imagine a number of other ways to mix/combine textures to synthesize an image that looks a bit like
each of the inputs: apply match-texture to a second image rather than noise, combine the high frequencies
of one texture with the low frequencies of another, combine two or more textures by averaging their
pyramid histograms, etc.

                    

Fig 2: (Left) Input digitized sample texture: burled mappa wood. (Middle) Input noise. (Right) Output
synthetic texture that matches the appearance of the digitized sample. Note that the synthesized texture
is larger than the digitized sample; our approach allows generation of as much texture as desired. In
addition, the synthetic textures tile seamlessly.
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Fig 3: left image is original and right image is synthetic

                                              

Fig 4: left image is original and right image is synthetic.

          

Fig 5: Texture mixtures synthesized by choosing the color palette from one image

and the pattern from a second image.
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Fig 6: (Left) Inhomogoneous input texture produces blotchy synthetic texture. (Right pair)
Homogenous input.

          

Fig 7: Examples of failures: wood grain and red coral.

                              

Fig 8: More failures: hay and marble.

5. Conclusion

This paper presents a technique for created a two- or three-dimensional (solid) texture array that looks
like a digitized texture image. The advantage of this approach is its simplicity; you do not have to be an
artist and you do not have to understand a complex texture synthesis model/procedure. You just crop a
textured region from a digitized image and run a program to produce as much of that texture as you want.
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