
 INDEXING AND RETRIEVAL SYSTEMS ON THE WEB
FOR DESIGN AND DEVELOPMENT OF A LOW COST

DIGITAL LIBRARY

by

Satish K. M*
Jayashree S**

ABSTRACT

The world wide web has become an undisputed and powerful medium to integrate multiple
information sources and services on the part of the libraries, leading to continual development
of new applications and services. Efficient implementation of existing services and an
opportunity for delivering information to the desktop of remote and local users has become an
immediate priority on the part of the libraries. Locally owned resources like the OPAC,
locally hosted electronic journals and databases, alerting services like new additions and
content pages, and integrating host of other services call for an unpretentious approach for
successful information services. In this paper an effort has been made to study the functions of
various indexing and retrieval tools available on the web for their understanding and
experience with standard indexing practices facilitating accurate and efficient data retrieval
leading to the abstraction of digital library.

Keywords: HTML, SGML, XML, Content Management – Document Formation

* Assistant Librarian, Goa University, Taleigao Plateau, Panaji – 403 206
** Technical Assistant, National Aerospace Laboratories, Bangalore – 560 017

0 Introduction

Several free and commercial indexing and retrieval software have been developed that
address the unique search and retrieval need of user communities. They are basically
designed to crawl and index web servers or portions of these servers to create custom and
searchable indexes of the documents and data housed on the servers. They have features that
are common with Internet search engines, but also contain some features that are unique, viz.,
provide indexing for other document formats like the PDF, word processing. Spread sheets,
databases, graphics and others contained in an intranet web site and are usually designed to
provide more precise data filtering and retrieval limiting the quantum of information the user
is required to sift through. Information professionals familiar with the indexing and
subsequent searching process can lend a lot to the evaluation and implementation of these
indexing and retrieval tools within the libraries. The need is to familiarise with the products
available and the issues surrounding their selection, implementation and use. In-depth
knowledge of searching techniques, together with the use of controlled vocabulary, Boolean
operators, proximity operators and relevance ranking is necessary for evaluation. An
understanding and experience with standard indexing practices and parameters can also
ensure that the data contained in the various indexes built using these tools will facilitate
accurate and efficient data retrieval. Although there are many players in this area, we shall
limit and discuss the features and functionality of the following free indexing and retrieval
systems for bibliographic and fulltext data: freeWAIS-sf, Isite/Isearch, MPS, Yaz/Zebra. We

 2

also look into the tools for indexing web sites and HTML files: Harvest, SWISH, Ht://Dig
and WebGlimpse.

As the size of information systems increase so does the necessity of providing searchable
interfaces to the underlying data. Indexing content and implementing an HTML form to
search the index is one way to accomplish this goal, but all indexing and retrieval tools are
not same. This case study enumerates the pros and cons of the above mentioned toolkits
currently available and makes recommendations on which to use and for what purposes. The
scope is limited to the indexing of ASCII format. Finally, this case study will make readers
aware that good search interface alone does not make for good information systems. Good
information systems also require consistently applied subject analysis and well-structured
data.

1 Bibliographic and Fulltext data

freeWAIS-sf

Of the indexing and retrieval tools analysed here, free WAIS-sf is by far the oldest, and the
predecessor Isite/Isearch, SWISH, and MPS. Yet, freeWAIS-sf is not really the oldest indexer
because it owes its existence to WAIS originally developed by Brewster Kahle of Thinking
Machines, Inc., in 1991.

FreeWAIS-sf supports a bevy of indexing types. For example, it can easily index Unix mbox
files, text files where records are delimited by blank lines, HTML files, as well as others.
Sections of these text files can be associated with fields for field searching through the
creation "format files" -- configuration files made up of regular expressions. After data has
been indexed, it can be made accessible through a CGI interface called SFgate, but the
interface relies on a Perl module, WAIS.pm, which is difficult to compile as it uses some of
the shared objects evolved after compiling the freeWAIS-sf . The interface supports lots of
search features including field searching, nested queries, right-hand truncation, thesauri,
multiple-database searching, and Boolean logic. This indexer represents aging code. Not
because it doesn't work, but because as new versions of operating systems evolve freeWAIS-
sf get harder and harder to install. After many trials and tribulations, it has been possible to
compile and install on RedHat Linux, and has been found most useful for indexing two types
of data: archived email and public domain electronic texts. For example, by indexing
archived email, one can do free text searches against the archives and return names, subject
lines, and ultimately the email messages (plus any attachments). Using the "para" indexing
type it is possible to index a small collection of public domain literature and provide a
mechanism to search one or more of these texts simultaneously for keywords like "dynasty"
to identify paragraphs from the collection. It is also amenable to index the bibliographic
records separated by any delimiter. Conspicuous limitation here is the generation of a large
size of the index files when compared to its contemporaries.

Isite/Isearch

Isearch is a software system for searching though large amounts of text. Developed by the
Clearinghouse for Networked Information Discovery and Retrieval (CNIDR) in 1994. The
system allows a user to very quickly find out what documents are available that contain
certain words. Unlike older search systems, Isearch does not use a list of keywords or an
abstract; every word of every document can be checked. This allows greatly improved

 3

chances of discovering new information in old collections. Handles very large collections:
over 1-gigabyte collections can be handled on modest servers. Essentially unlimited textbases
can be searched with careful layout and planning. Very sophisticated result sorting: The
documents most likely to be useful are returned first. Ranking is based on statistical analysis
of word frequencies and is generalized for a wide variety of subjects and user skill levels.
Works well with OCR document storage and retrieval systems: no need for people to classify
documents, and the statistical ranking method is forgiving of OCR errors. Easy to customize:
The modular, object-oriented structure of Isearch means that new features can be added
independently of the Isearch core. Third party extension is facilitated by using well-defined
Application Programming Interfaces (APIs) implemented in C++. Integrates smoothly with
World Wide Web (WWW) and ANSI Z39.50 servers: Anyone can search an Isearch textbase
using web browser. When used with Isite package, Isearch can be used through a Z39.50
session to interoperate with library automation software. Isearch and Isite together form
three-tier client-server architecture to allow essentially unlimited capacity growth.

Isite/Isearch is one of the very first implementations based on the WAIS code. It is intended
to support the Z39.50 information retrieval protocol. Like freeWAIS it supports a number of
file formats for indexing. Unfortunately, Isite/Isearch no longer seems to be supported and
the documentation is weak. While it comes with a CGI interface and is easily installed, the
user interface is difficult to understand and needs a lot of tweaking before it can be called
usable by today's standards.

MPS

MPS seems to be the fastest of the indexers analysed. It can create more data in a shorter
period of time than all of the other indexers. Unlike the other indexers MPS divides the
indexing process into two parts: parser and indexer. The indexer accepts what is called a
"structured index stream", a specialized format for indexing. By structuring the input, the
indexer expects it is possible to write output files from the database application and have the
content of database indexed and searchable by MPS. It is not limited to indexing the content
of databases with MPS. Since it too was originally based on the WAIS code, it indexes many
other data types such as mbox files, files where records are delimited by blank lines
(paragraphs), as well as a number of MIME types (RTF, TIFF, PDF, HTML, SOIF, etc.).
Like many of the WAIS derivatives, it can search multiple indexes simultaneously, supports a
variant of the Z39.50 protocol, and a wide range of search syntax.

MPS also comes with a Perl API and an example CGI interface. The Perl API comes with the
barest of documentation, but the CGI script is quite extensive. One of the neatest features of
the example CGI interface is its ability to allow users to save and delete searches against the
indexes for processing later. For example, if this feature is turned on, then a user first logs
into the system. As the user searches the system their queries are stored to the local file
system. The user then has the option of deleting one or more of these queries. Later, when the
user returns to the system they have the option of executing one or more of the saved
searches. These searches can even be designed to run on a regular basis and the results sent
via email to the user. This feature is good for data that changes regularly over time such news
feeds, mailing list archives, etc. MPS has a lot going for it. If it were able to extract and index
the META tags of HTML documents, and if the structured index stream as well as the Perl
API were better documented, then this indexer/search engine would ranking higher on the
list.

 4

Yaz/Zebra

The Yaz/Zebra combination is probably the best indexer/search engine solution for librarians
who want to implement an open source Z39.50 interface. Z39.50 is an ANSI/NISO standard
for information retrieval based on the idea of client/server. According to Library of Congress
web site “It specifies procedures and structures for a client to search a database provided by a
server, retrieve database records identified by a search, scan a term list, and sort a result set.
Access control, resource control, extended services, and a help facility is also supported. The
protocol addresses communication between corresponding information retrieval applications,
the client and server (which may reside on different computers); it does not address
interaction between the client and the end-user.” In another words, Z39.50 tries to facilitate a
"query once, search many" interface to indexes in a truly standard way, and the Yaz/Zebra
combination is probably the best open source solution to this problem.

Yaz is a toolkit allowing creating Z39.50 clients and servers. Zebra is an indexer with a
Z39.50 front-end. To make these tools work, the first thing to be done is to download and
compile the Yaz toolkit. Once installed documents are fed to the Zebra indexer (it requires a
few Yaz libraries) and make the documents available through the server. While the
Yaz/Zebra combination does not come with a Perl API, there are at least a couple of Perl
modules available from CPAN providing Z39.50 interface. There is also a module called
ZAP (http://www.indexdata.dk/zap/) allowing embedding a Z39.50 client into Apache web
server.

There is absolutely nothing wrong with the Yaz/Zebra combination. It is well documented,
standards-based, as well as easy to compile and install. The difficulty with this solution is the
protocol, Z39.50. It is considered overly complicated and therefore the configuration files
need to be maintained and the formats of the files available for indexing are rather obtuse.

2 Indexing Websites and HTML Files

Harvest

Harvest was originally funded by a federal grant in 1995 at the University of Arizona. It is
essentially made up of two components: gatherers and brokers. Given sets of one or more
URLs, gatherers crawl local and/or remote file systems for content and create surrogate files
in a format called SOIF. After one or more of the SOIF collections have been created they
can be federated by a broker, an application indexing them and makes them available though
a web interface.

The Harvest system assumes the data being indexed is ephemeral. Consequently, index items
become "stale", are automatically removed from retrieval, and need to be refreshed on a
regular basis. This is considered a feature, but if the content does not change very often it is
more a hindrance than a benefit. Harvest is not very difficult to compile and install. It comes
with a decent shell script allowing setting up rudimentary gatherers and brokers.
Configuration is done through the editing of various text files outlining how output is to be
displayed. The system comes with a web interface for administrating the brokers. If the
indexed content is consistently structured and includes META tags, then it is possible to
output very meaningful search results that include abstracts, subject headings, or just about
any other fields defined in the META tags of the HTML documents. The real strength of the
Harvest system lies in its gathering functions. Ideally system administrators are intended to

 5

create multiple gatherers. These gatherers are designed to be federated by one or more
brokers.

SWISH

Kevin Hughes originally wrote SWISH. This software is a model of simplicity. To get it to
work one needs to downloaded, unpack, configure, compile, edit the configuration file, and
feed the file to the application. A single binary and a single configuration file are used for
both indexing and searching. The indexer supports web crawling. The resulting indexes are
portable among hosts. The search engine supports phrase searching, relevance ranking,
stemming, Boolean logic, and field searches.

The hard part about SWISH is the CGI interface. Many SWISH CGI implementations pipe
the search query to the SWISH binary, capture the results, parse them, and return them
accordingly. Recently a Perl as well as PHP module have been developed allowing the
developer to avoid this problem, but the modules are considered beta software. Like Harvest,
SWISH can automatically extract the content of HTML META tags and make this content
field searchable. Assume a META tag in the header of the HTML document such as this:

<META NAME="subject" CONTENT="adaptive technologies; CIL (Computers In
Libraries);">

The SWISH indexer would create a column in its underlying database named "subject" and
insert into this column the values "adaptive technologies" and "CIL (Computers In
Libraries)". Then a query can be submitted to SWISH as this:

subject = "adaptive technologies"

This query would then find all the HTML documents in the index whose subject META tag
contained this value resulting in a higher precision/recall ratio. This same technique works in
Harvest as well, but since the results of a SWISH query are more easily malleable before they
are returned to the web browser,. A specific field can easily sort SWISH results, or more
importantly, SWISH results can be marked up before they are returned. For example, if CGI
interface supports the GET HTTP method, then the content of META tags can be marked up
as hyperlinks allowing the user to easily address the perennial problem of "Find me more like
this one.” thus supporting the query by example search type.

Ht://Dig

This is simple web site indexer, but does not have the features of some of the other available
distributions. Configuring the application for compilation is easy, but unless the paths are set
correctly. Like SWISH, to index the data needs to be feed via the application configuration
file and it then creates gobs of data. Many indexes can be created and they then have to be
combined into a single database for searching.

The indexer supports Boolean queries, but not phrases searching. It can apply an automatic
stemming algorithm. The search engine does not support field searching, and a rather
annoying thing is that the indexer does not remove duplicates. Consequently, index.html files
almost always appear twice in search results. On the other hand, one notable feature is it does
do that the other engines don't do (except WebGlimpse) is highlight query terms in a short

 6

blurb (a pseudo-abstract) of the search results. Ht://Dig is a simple tool. Considering the
complexity of some of the other tools covered here.

WebGlimpse

WebGlimpse is a newer incarnation of the original Harvest software. Like Harvest,
WebGlimpse relies on Glimpse to provide an indexing mechanism, but unlike Harvest,
WebGlimpse does not provide a means to federate indexes through a broker. Compilation and
installation is rather harmless, and the key to using this application effectively is the ability to
edit a small configuration file that is used by the indexer (archive.cfg). Once edited correctly,
another binary reads this file, crawls a local or remote file system, and indexes the content.
The indexes are then available through a simple CGI interface. Unfortunately, the output of
the interface is not configurable unless the commercial version of the software is purchased.
This is a real limitation, but on the other hand, the use of WebGlimpse does not require a
separate pair of servers (a broker and/or a gatherer) running in order to operate. WebGlimpse
reads Glimpse indexes directly.

3 Conclusion

Indexers provide one means for "finding a needle in a haystack" but not necessarily depend
on it to satisfy user information needs; information systems require well-structured data and
consistently applied vocabularies in order to be truly useful. Information systems can be
defined as organized collections of information. In order to be accessed, they require
elements of readability, browsability, searchability, and finally interactive assistance. It
connotes meaningful navigation, a sense of order, and a systematic layout. As the size of an
information system increases, it requires browsability -- an obvious organization of
information that is usually embodied through the use of a controlled vocabulary.
Searchability is necessary when a user seeks specific information and when the user can
articulate their information need. Searchability flattens browsable collections. Finally,
interactive assistance is necessary when an information system becomes very large or
complex. Even though a particular piece of information exists in a system, it is quite likely
that a user will not find that information and may need help. Interactive assistance is that
help mechanism.

By creating well-structured data one can supplement the searchability aspects of the
information system. For example, if the data is indexed is HTML, then insertion of META
tags into the documents is useful and can be used as a controlled vocabulary -- a thesaurus --
to describe those documents. If this is used then SWISH or Harvest can be used to extract
these tags and provide field-searching access to the documents. Free text searches rely too
much on statistical analysis and can not return as high precision/recall ratios as field searches.

The indexing and retrieval tools discussed here have different strengths and weaknesses. If
the content is primarily HTML pages, then SWISH is most likely the application one would
want to use. It is fast, easy to install, and since it comes with no user interface one can create
with just about any scripting language. If content is not necessarily HTML files, but
structured text files then MPS or the Yaz/Zebra combination may be preferred. Both of these
applications support a wide variety of file formats for indexing as well as the incorporation of
standards.

 7

4 References

1. freeWAIS-sf
 http://ls6-www.informatik.uni-dortmund.de/ir/projects/freeWAIS-sf/
2. Harvest
 http://www.tardis.ed.ac.uk/harvest/
3. Ht://Dig
 http://www.htdig.org/
4. Isite/Isearch
 http://www.etymon.com/Isearch/
5. MPS
 http://www.fsconsult.com/products/mps-server.html
6. SWISH
 http://sunsite.berkeley.edu/SWISH-E/
7. WebGlimpse
 http://webglimpse.net/
8. Yaz/Zebra
 http://indexdata.dk/zebra/
9. http://lcweb.loc.gov/z3950/agency/markup/01.html

